Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:
http://www.elsevier.com/copyright

Uniformly resolvable designs with index one, block sizes three and five and up to five parallel classes with blocks of size five

Ernst Schuster
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany

ARTICLE INFO

Article history:

Received 1 August 2008
Received in revised form 2 February 2009
Accepted 3 February 2009
Available online 28 February 2009

Keywords:

Uniformly resolvable design
Incomplete uniformly resolvable design
Labeled uniformly resolvable design
Resolvable group divisible design
Frame
Transversal design

Abstract

Each parallel class of a uniformly resolvable design (URD) contains blocks of only one block size k (denoted $k-\mathrm{pc}$). The number of k-pcs is denoted r_{k}. The necessary conditions for URDs with v points, index one, blocks of size 3 and 5 , and $r_{3}, r_{5}>0$, are $v \equiv 15(\bmod 30)$. If $r_{k}>1$, then $v \geq k^{2}$, and $r_{3}=\left(v-1-4 \cdot r_{5}\right) / 2$. For $r_{5}=1$ these URDs are known as group divisible designs. We prove that these necessary conditions are sufficient for $r_{5}=3$ except possibly $v=105$, and for $r_{5}=2,4,5$ with possible exceptions ($v=105,165,285,345$) New labeled frames and labeled URDs, which give new URDs as ingredient designs for recursive constructions, are the key in the proofs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let v and λ be positive integers and let K and M be two sets of positive integers. A group divisible design, denoted $\operatorname{GDD}_{\lambda}(K, M ; v)$, is a triple $(X, \boldsymbol{G}, \boldsymbol{B})$, where X is a set with v elements (called points), \boldsymbol{G} is a set of subsets (called groups) of X, \boldsymbol{G} partitions X, and \boldsymbol{B} is a collection of subsets (called blocks) of X in such a way that:

1. $|B| \in K$ for each $B \in \boldsymbol{B}$;
2. $|G| \in M$ for each $G \in \boldsymbol{G}$;
3. $|B \cap G| \leq 1$ for each $B \in \boldsymbol{B}$ and $G \in \boldsymbol{G}$; and
4. each pair of elements of X from distinct groups is contained in exactly λ blocks.

The notation is similar to that used in [3]. Unless otherwise stated, the element set X of a design with v points is labeled $1,2, \ldots, v$. If $\lambda=1$, the index λ is omitted. If $K=\{k\}$, respectively $M=\{m\}$, then the $\operatorname{GDD}_{\lambda}(K, M ; v)$ is simply denoted $\operatorname{GDD}_{\lambda}(k, M ; v)$, respectively $\operatorname{GDD}_{\lambda}(K, m ; v)$, which is also specified in "exponential" form as $K-G D D_{\lambda}$ of type $m^{v / m}$. A $\mathrm{GDD}_{\lambda}(K, 1 ; v)$ is called a pairwise balanced design and denoted $\mathrm{PBD}_{\lambda}(K ; v)$.

Theorem 1.1 ([8,9]). There exists a 4-GDD of type $g^{4} m^{1}$ with $m>0$ if, and only if, $g \equiv m \equiv 0(\bmod 3)$ and $0<m \leq 3 g / 2$.
In a $\mathrm{GDD}_{\lambda}(K, M ; v)(X, \boldsymbol{G}, \boldsymbol{B})$, a parallel class (pc) is a set of blocks which partitions X. If \boldsymbol{B} can be partitioned into parallel classes, then the $\operatorname{GDD}_{\lambda}(K, M ; v)$ is said to be resolvable and denoted $\operatorname{RGDD}_{\lambda}(K, M ; v)$. Analogously, a resolvable $\operatorname{PBD}_{\lambda}(K ; v)$ is denoted $\operatorname{RPBD}_{\lambda}(K ; v)$. A parallel class is said to be uniform if it contains blocks of only one size $k(k-\mathrm{pc})$. If all of the parallel classes of an $\operatorname{RPBD}_{\lambda}(K ; v)\left(\operatorname{RGDD}_{\lambda}(K, M ; v)\right)$ are uniform, the design is said to be uniformly resolvable. A uniformly resolvable design $\operatorname{RPBD}_{\lambda}(K ; v)\left(\operatorname{RGDD}_{\lambda}(K, M ; v)\right)$ is denoted by $\operatorname{URD}_{\lambda}(K ; v)\left(\operatorname{UGDD}_{\lambda}(K, M ; v)\right)$. If $\lambda=1$, the index λ is omitted. In a $\operatorname{URD}_{\lambda}(K ; v)\left(\operatorname{UGDD}_{\lambda}(K, M ; v)\right)$ the number of uniformly resolution classes with blocks of size k, is denoted r_{k}.

All $\operatorname{RPBD}(5 ; v)$ are known apart from four possible exceptions.

[^0]Theorem 1.2 ([1,2]). There exists a $5-R G D D$ of type $5^{4 t+1}$ for $t \geq 1, t \notin\{2,17,23,32\}$.
Theorem $1.3([10,16])$. There exists an $\operatorname{RGDD}(3, m ; v)$ if, and only if, $v \equiv 0(\bmod m), v \geq 3 \cdot m, v \equiv 0(\bmod 3)$ and $v-m \equiv 0(\bmod 2)$, except when $(v, m)=(6,2),(12,2),(18,3)$.

A resolvable transversal design $\mathrm{RTD}_{\lambda}(k, g)$, is equivalent to an $\mathrm{RGDD}_{\lambda}(k, g ; k \cdot g)$. That is, each block in an $\mathrm{RTD}_{\lambda}(k, g)$ contains a point from each group. A K-frame ${ }_{\lambda}$ is a $\operatorname{GDD}(X, \boldsymbol{G}, \boldsymbol{B})$ with index λ, in which \boldsymbol{B} can be partitioned into holey parallel classes (each of which partitions $X \backslash G$ for some $G \in \boldsymbol{G}$). We use the usual exponential notation for the types of GDDs and frames. Thus a GDD or a frame of type $1^{i} 2^{j}, \ldots$ is one in which there are i groups of size $1, j$ groups of size 2 , and so on. A K-frame is said to be uniform if each partial parallel class is of only one block size. It is said to be completely uniform if for each hole G the resolution classes which partition $X \backslash G$ are all of one block size. We use only $K=\{3,5\}$. A $\{3,5\}$-frame ${ }_{\lambda}$ of type $\left(g ; 3^{n_{1}} \cdot 5^{n_{2}}\right)^{u}\left(m ; 3^{n_{3}} \cdot 5^{n_{4}}\right)^{1}$ has u groups of size g. Each group of size g has n_{1} holey pcs of block size 3 and n_{2} holey pcs of block size 5 . The only group of size m has n_{3} holey pcs of block size 3 and n_{4} holey pcs of block size 5 .

Theorem 1.4 ([12]). For $k=2$ and $k=3$ there exists a k-frame of type $h^{u} i f$, and only $i f, u \geq k+1, h \equiv 0(\bmod k-1)$, and $h \cdot(u-1) \equiv 0(\bmod k)$.

Later on, some incomplete group divisible designs will be used. An incomplete group divisible design (IGDD) with block sizes from a set K and index unity is a quadruple ($X, \boldsymbol{G}, H, \boldsymbol{B}$), which satisfies the following properties:

1. $\boldsymbol{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a partition of the set X of points into subsets called groups;
2. H is a subset of X called the hole;
3. \boldsymbol{B} is a collection of subsets of X with cardinality from K, called blocks, such that a group and a block contain at most one common point; and
4. every pair of points from distinct groups is either contained in H or occurs in a unique block but not both.

This design is denoted by $\operatorname{IGDD}(K, M ; v)$ of type T, where $M=\left\{\left|G_{1}\right|,\left|G_{2}\right|, \ldots,\left|G_{n}\right|\right\}$ and T is the multiset $\left\{\left(\left|G_{i}\right|,\left|G_{i} \cap H\right|\right): 1 \leq i \leq n\right\}$. Sometimes, "exponential" notation is used to describe the type. An $\operatorname{IGDD}(K, M ; v)$ of type T is said to be uniformly resolvable and denoted by $\operatorname{UIGDD}(K, M ; v)$ of type T if its blocks can be partitioned into uniformly parallel classes and partial uniformly parallel classes, the latter partitioning $X \backslash H$. The numbers of uniformly parallel classes and partial uniformly parallel classes are denoted by r_{k} and r_{k}°, respectively. If $\left|G_{i}\right|=1$ for $1 \leq i \leq n$ then the UIGDD is called an incomplete uniformly resolvable design $\operatorname{IURD}(K ; v)$ with a hole H.

Theorem $1.5([13])$. For any $v \equiv 3(\bmod 6)$ and $w \equiv 3(\bmod 6)$ such that $v \geq 3 w$ there is an $\operatorname{RIPBD}(3 ; v)$ with a hole of size w and $(w-1) / 2$ holey 3-pcs, that is a 3-UIGDD of type $1^{v-w} w^{1}$ with $r_{3}^{\circ}=(w-1) / 2$.

Some known results about URDs are summarized in the following. Rees introduced in [11] URDs and showed:
Theorem 1.6 ([11]). There exists a URD $(\{2,3\} ; v)$ with $r_{2}, r_{3}>0$ if, and only if,

1. $v \equiv 0(\bmod 6)$;
2. $r_{2}=v-1-2 \cdot r_{3}\left(r_{3}=\frac{v-1-r_{2}}{2}\right)$; and
3. $1 \leq r_{3} \leq \frac{v}{2}-1$;
with the two exceptions $\left(v, r_{3}\right) \neq(6,2),(12,5)$.
Theorem 1.7 ([4,14]). There exists a design $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4}=3$ or $5 i f$, and only if, $v \equiv 0(\bmod 12)$ except when $v=12$.

Theorem 1.8 (See [5] Theorems 1.1 and 3.6). The necessary conditions for the existence of $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{3}, r_{5}>0$ are:

1. $v \equiv 15(\bmod 30)$;
2. if $r_{k}>1$, then $v \geq k^{2}$; and
3. $r_{5}=\frac{v-1-2 \cdot r_{3}}{4}, \quad\left(r_{3}=\frac{v-1-4 \cdot r_{5}}{2}\right)$.

The third condition means that if r_{3} is given, then r_{5} is determined, and vice versa. The only known result with $r_{5}>0$ is a special case of Theorem 1.3. We take the groups as an additional parallel class to get the URD.

Theorem 1.9. There exists a $3-R G D D$ of type $5^{3 \cdot(2 n+1)}, n \geq 0$; and also a URD $(\{3,5\} ; v)$ with $r_{5}=1$ for all $v \equiv 15(\bmod 30)$. In the next section labeled resolvable designs are introduced. We construct some new labeled uniformly resolvable designs which will be used as ingredients for our main recursive constructions in Section 3. The results will be given in the last two sections.

2. Labeled resolvable designs and direct constructions

The concept of labeled resolvable designs is needed in order to get direct constructions for resolvable designs. This concept was introduced by Shen $[15,17,16]$.

Let (X, \boldsymbol{B}) be a $(\mathrm{U}) \mathrm{GDD}_{\lambda}(K, M ; v)$ where $X=\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$ is totally ordered with ordering $a_{1}<a_{2}<\cdots<a_{v}$. For each block $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \in K$, it is supposed that $x_{1}<x_{2}<\cdots<x_{k}$. Let Z_{λ} be the group of residues modulo λ.

Let $\varphi: \boldsymbol{B} \rightarrow Z_{\lambda}^{\binom{k}{2}}$ be a mapping where for each $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \boldsymbol{B}, k \in K, \varphi(B)=\left(\varphi\left(x_{1}, x_{2}\right), \ldots, \varphi\left(x_{1}, x_{k}\right)\right.$, $\left.\varphi\left(x_{2}, x_{3}\right), \ldots, \varphi\left(x_{2}, x_{k}\right), \varphi\left(x_{3}, x_{4}\right), \ldots, \varphi\left(x_{k-1}, x_{k}\right)\right), \varphi\left(x_{i}, x_{j}\right) \in Z_{\lambda}$ for $1 \leq i<j \leq k$.
$\mathrm{A}(\mathrm{U}) \mathrm{GDD}_{\lambda}(K, M ; v)$ is said to be a labeled (uniform resolvable) group divisible design, denoted $\mathrm{L}(\mathrm{U}) \mathrm{GDD}_{\lambda}(K, M ; v)$, if there exists a mapping φ such that:

1. For each pair $\{x, y\} \subset X$ with $x<y$, contained in the blocks $B_{1}, B_{2}, \ldots, B_{\lambda}$, then $\varphi_{i}(x, y) \equiv \varphi_{j}(x, y)$ if, and only if, $i=j$ where the subscripts i and j denote the blocks to which the pair belongs, for $1 \leq i, j \leq \lambda$; and
2. For each block $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \in K, \varphi\left(x_{r}, x_{s}\right)+\varphi\left(x_{s}, x_{t}\right) \equiv \varphi\left(x_{r}, x_{t}\right)(\bmod \lambda)$, for $1 \leq r<s<t \leq k$.

Its blocks will be denoted in the following form:

$$
\left(x_{1} x_{2} \cdots x_{k} ; \varphi\left(x_{1}, x_{2}\right) \cdots \varphi\left(x_{1}, x_{k}\right) \varphi\left(x_{2}, x_{3}\right) \cdots \varphi\left(x_{2}, x_{k}\right) \varphi\left(x_{3}, x_{4}\right) \cdots \varphi\left(x_{k-1}, x_{k}\right)\right), \quad k \in K .
$$

The above definition was first used in [14] and is a little bit more general than the definition by Shen [16] with $K=\{k\}$ or Shen and Wang [17] for transversal designs. As a special case of type 1^{v}, a labeled $\operatorname{URD}_{\lambda}(K ; v)$, is denoted by $\operatorname{LURD}_{\lambda}(K ; v)$. A labeled K-frame of type T and index λ is denoted $K-\mathrm{LF}_{\lambda}$ of type T.

The following designs were constructed by a computer.
Example 2.1. The following is an example of an $\operatorname{LURD}_{3}(\{3,5\} ; 15)$ with $r_{5}=2$, where each row forms a uniformly parallel class:
(6713; 01 1), (1311; 10 2), (12 14 15; 220), (2 58 8; 220), (4 9 10; 212),
(6714; 21 2), (59 11; 02 2), (8 13 15; 102), (34 12; 212), (12 10; 20 1),
(71014; 212), (2 $411 ; 220$), (3 $512 ; 000),(91315 ; 220),(168 ; 022)$,
(1413; 212), (68 10; 02 2), (514 15; 02 2), (2 9 12; 20 1), ($3711 ; 011$),
(145; 12 1), (2 3 13; 110), (1011 14; 212), ($679 ; 102$), (812 15; 110),
(1910; 01 1), (46 14; 000), (3 $58 ; 102$), (27 15; 212), (11 12 13; 220),
(101315; 011), (6 $611 ; 121$), (357; 220), (12 12; 12 1), (4 8 14; 121),
(2 $48 ; 000$), (79 15; 110), (3 $611 ; 201$), (510 12; 220), (113 14; 011),
(7813; 220), (2 $59 ; 102$), (111 14; 12 1), (612 15; 20 1), (3 $410 ; 110$),
(2 $36 ; 220),(489 ; 212),(11115 ; 212),(712$ 14; 201 1), (510 13; 12 1),
(17 10; 220), (69 13; 20 1), (3 8 14; 102), (45 12; 01 1), (2 11 15; 000),
(7811; 000), (310 12; 02 2), ($156 ; 02$ 2), (4 9 15; 01 1), (2 13 14; 02 2),
(268; 011), (139; 02 2), (4 1415; 12 1), (57 10; 201), (11 12 13; 102),
(46 11; 110), (3 13 14; 220), (89 10; 000), (15 15; 12 1), (2 7 12; 121),
(147; 01 1), (2 10 14; 000), ($3913 ; 110$), (811 12; 220), ($5615 ; 102$),
(5 8 13; 102), (1011 15; 121 1), ($3914 ; 011$), ($1612 ; 110$), ($247 ; 102$),
(8 10 11; 110), ($3415 ; 000$), (56 14; 02 2), (79 12; 000), (12 13; 02 2),
(137815; 2010121102), (46101213; 2201012121), (2591114; 0111111000),
(4571113; 202010120 1), (18912 14; 0100100220), (2 3610 15; 0122122110).
Example 2.2. An $\operatorname{LURD}_{3}(\{3,5\} ; 15)$ with $r_{5}=3$, where each row forms a uniformly parallel class:
(3 4 15; 12 1), (56 13; 10 2), (8 9 12; 220), (17 10; 220), (2 11 14; 02 2),
(6712; 102), ($101115 ; 000$), (2 $48 ; 02$ 2), ($31314 ; 011$), (159; 121),
(4 8 11; 01 1), (17 12; 000), (69 14; 011), (23 13; 12 1), (510 15; 201),
(2 5 10; 12 1), ($7911 ; 02$ 2), ($134 ; 212$), (612 15; 220), ($81314 ; 102$),
(2 10 12; 000), (3 9 14; 220), (68 15; 000), (17 13; 102), ($4511 ; 000$),
(11 12 13; 02 2), (457; 220), (68 14; 102), (12 15; 212), ($3910 ; 12$ 1),
(1 8 11; 212), (37 15; 21 2), (2 9 14; 212), (56 13; 220), (4 10 12; 212),
(139; 110), (4612; 12 1), (10 13 15; 02 2), (7814; 20 1), (2 5 11; 02 2),
(12 14 15; 212), (19 10; 000), (45 13; 12 1), (267; 000), (3 $811 ; 000$),
(7 10 14; 12 1), ($236 ; 01$ 1), (4 9 13; 011), (1112 15; 212), ($158 ; 000$),
(31115; 10 2), (579 9; 102), (4 $810 ; 102$), ($1614 ; 102$), ($21213 ; 201$),
(5 11 14; 110), (3 $47 ; 000$), (1615; 20 1), ($81013 ; 102$), (2 $912 ; 011$),
(1 2 10; 01 1), ($51415 ; 01$ 1), (711 13; 011), (4 $69 ; 212$), ($3812 ; 201$),
(6810; 220), (111 14; 01 1), (57 12; 20 1), (2 3 13; 212), (4 $915 ; 201$),
(9 11 12; 12 1), (356; 000), (113 15; 121), ($278 ; 110$), (4 10 14; 110),
(78913 15; 1100022220), (1246 11; 100222102 2), (35 1012 14; 112001212 1),
(141213 14; 2222000000), (3671011; 2102210212), (258915; 2011122110),
(135812; 0211211220), (69101113; 1011200110), (2471415; 1200122110).

Example 2.3. $\operatorname{AnLURD}_{3}(\{3,5\} ; 15)$ with $r_{5}=4$, where each row forms a uniformly parallel class:
(1 13 14; 01 1), (2 9 15; 000), (5 8 11; 12 1), (3 10 12; 20 1), (4 $67 ; 12$ 1),
(3714; 20 1), (1411; 10 2), (6 8 15; 21 2), (5 10 13; 01 1), (2 9 12; 110), (469; 02 2), (8 13 14; 110), (17 10; 102), (2 $35 ; 220$), (11 12 15; 102), (2 4 13; 212), (57 14; 110), (610 15; 220), ($3911 ; 01$ 1), (18 12; 000), (2 6 14; 20 1), (810 13; 02 2), (19 15; 21 2), (311 12; 220), ($457 ; 102$), (71215; 110), (14 5; 02 2), (2 8 10; 21 2), (911 14; 000), ($3613 ; 110$), (5 8 12; 20 1), (4 9 11; 10 2), (37 15; 110), ($1614 ; 102$), (2 10 13; 000), (910 15; 21 2), (15 11; 011), (2 $34 ; 000$), ($71213 ; 000$), (68 14; 102), (4 $89 ; 20$ 1), (513 15; 20 1), (1 7 12; 02 2), (610 11; 01 1), (23 14; 12 1), (3 5 10; 212), (4 $67 ; 212$), (912 13; 12 1), (2 8 11; 110), (114 15; 220), (11 12 14; 220), (1 3 13; 21 2), (48 10; 01 1), (2 $79 ; 02$ 2), (5 6 15; 220), (10 11 14; 20 1), (2 5 15; 01 1), (3 6 12; 01 1), (789; 10 2), (1413; 220), (4 10 12; 21 2), (12 15; 10 2), (56 11; 000), (913 14; 02 2), (3 $78 ; 000$), (1271011; 022222200 0), (5 6912 13; 1210102212), (3481415; 122011201 1), (126812; 222100202 2), (341113 15; 200211002 2), (57910 14; 011211201 1), (13589; 0111111000), (2671113; 1102021212), (4 $10121415 ; 0021021212$), (136910; 100122001 1), (781113 15; 2122200110), (2451214; 110102020 1).

Example 2.4. An $\operatorname{LURD}_{3}(\{3,5\} ; 15)$ with $r_{5}=5$, where each row forms a uniformly parallel class:
(126; 000), (3 13 14; 102), (459; 220), (7812; 12 1), (10 11 15; 000),
(129; 12 1), (3 4 11; 000), (56 13; 220), (78 15; 01 1), (10 12 14; 011),
(135; 220), (2 46; 011), (714 15; 20 1), (810 12; 102), (911 13; 220),
(13 14; 02 2), (2 4 15; 21 2), (5 12 13; 21 2), (6 8 10; 10 2), (79 11; 20 1), (15 15; 02 2), (2 12 13; 12 1), ($348 ; 102$), ($6711 ; 121$), (910 14; 000), (16 11; 20 1), (2 7 12; 12 1), (38 13; 102), (49 14; 01 1), (510 15; 01 1), (16 11; 110), (2 7 12; 000), ($3813 ; 220$), (4 $914 ; 102$), (510 15; 102), (189; 20 1), (2 13 15; 10 2), (3 10 11; 12 1), (4 5 12; 12 1), (67 14; 20 1), (1815; 102), (2 3 10; 110), ($41112 ; 110$), ($579 ; 011$), (613 14; 121), (1 11 12; 20 1), (2 $37 ; 220$), (4 1415; 212), ($5610 ; 12$ 1), ($8913 ; 011$), (1 12 14; 110), (2 9 10; 02 2), (3 $57 ; 212$), (4 $68 ; 000$), (11 13 15; 110), (1241013; 2022100220), (367915; 222100202 2), (5 81112 14; 1102021212), (1391215; 1121010102), (2568 14; 2210021212), (47 1011 13; 0021021212), (145713; 1121010102), (28111415; 2022100220), (3691012; 012012012 1), (147810; 2100211220), (2351114; 0111111000), (69 $921315 ; 222000101$ 1), (17101314; 0100100220), (25 89 11; 0022022220), (34612 15; 2122200110).
The main application of the labeled designs is to blow up the point set of a given design using the following theorem, which extends the work of [15] such that it is applicable to labeled (uniform resolvable) pairwise balanced designs.

Theorem $2.5([15,14])$. If there exists an $L(U) G D D_{\lambda}(K, M ; v)$ (with r_{k}^{L} classes of size k, for each $k \in K$), then there exists an (U) $\operatorname{GDD}(K, \lambda \cdot M ; \lambda \cdot v)$, where $\lambda \cdot M=\left\{\lambda \cdot g_{i} \mid g_{i} \in M\right\}$ (with $r_{k}=r_{k}^{L}$ classes of size k, for each $k \in K$). If there exists a uniform frame $K-L F_{\lambda}$ of type T, then there exists a uniform K-frame of type $\lambda \cdot T$, where $\lambda \cdot T=\left\{\lambda \cdot g_{i} \mid g_{i} \in T\right\}$.
Proof. Let $(X, \boldsymbol{G}, \boldsymbol{B})$ be an $\operatorname{LRGDD}_{\lambda}(K, M ; v)$ where $X=\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$. Expanding each point $a_{i} \in X \quad \lambda$ times gives the points $\left\{a_{i, 0}, \ldots, a_{i, \lambda-1}\right\}, i=1, \ldots, v$, in the new design. Any group with g_{i} points becomes a new group with $\lambda \cdot g_{i}$ points. Each labeled block $\left(x_{1} x_{2} \ldots x_{k} ; \varphi\left(x_{1}, x_{2}\right) \ldots \varphi\left(x_{1}, x_{k}\right) \varphi\left(x_{2}, x_{3}\right) \ldots \varphi\left(x_{2}, x_{k}\right) \varphi\left(x_{3}, x_{4}\right) \ldots \varphi\left(x_{k-1}, x_{k}\right)\right), k \in K$, gives λ new blocks $\left\{x_{1, j}, x_{2, j+\varphi\left(x_{1}, x_{2}\right)}, \ldots, x_{k, j+\varphi\left(x_{1}, x_{k}\right)}\right\}, k \in K, j=0, \ldots,(\lambda-1)$ with indices calculated mod (λ) and all blocks taken together consist of different points. Therefore, each (holey) uniformly parallel class of the labeled design with blocks of size k gives a (holey) parallel class of the expanded design with blocks of the same size k. Since a frame consists of holey parallel classes, it can be expanded, too. For each pair $\{x, y\} \subset X$ with $x<y$ from different groups, let $B_{1}, B_{2}, \ldots, B_{\lambda}$ be the λ blocks containing $\{x, y\}$ and let $\varphi_{i}(x, y)$ be the values of $\varphi(x, y)$ corresponding to $B_{i}, 1 \leq i \leq \lambda$. Due to the first condition all pairs $\left\{x_{j}, y_{j+\varphi_{i}(x, y)}\right\}, i=1, \ldots, \lambda, j=0, \ldots,(\lambda-1)$, with indices calculated $\bmod (\lambda)$, are different.
A special case for URDs is shown in the following.
Corollary 2.6. If there exists an $\operatorname{LURD}_{\lambda}(K ; v)$ with r_{k}^{L} classes of size k, for each $k \in K$, then there exists $a \operatorname{URD}(K \cup\{\lambda\} ; \lambda \cdot v)$ with $r_{k}=r_{k}^{L}$ when $k \neq \lambda$, and $r_{\lambda}=r_{\lambda}^{L}+1$, where we take $r_{\lambda}^{L}=0$ if $\lambda \notin K$.

Lemma 2.7. A URD $(\{3,5\} ; 45)$ with $r_{5}=2,3,4,5$ exists.
Proof. The designs $\operatorname{LURD}_{3}(\{3,5\} ; 15)$ with $r_{5}=2,3,4,5$ are given in Examples $2.1-2.4$. Therefore, the assertion follows by Corollary 2.6.

Example 2.8. A uniform labeled frame $\{3,5\}-\operatorname{LF}_{6}$ of type $\left(1 ; 3^{3}\right)^{5}\left(2 ; 5^{3}\right)^{1}, \boldsymbol{G}=\{\{1\},\{2\},\{3\},\{4\},\{5\},\{6,7\}\}$; each row forms a holey uniformly parallel class:
(456; 154), (237; 143),
(347; 10 5), (256; 01 1),
(356; 512), (2 $47 ; 011$),
(157; 325), (346; 220),
(356; 105), (147; 550),
(136; 43 5), (457; 52 3),
(257; 53 4), (146; 01 1),
(247; 204), (156; 550),
(126;022), (457; 23 1),
(357; 24 2), (126; 204),
(2 $36 ; 534$), (157; 440),
(256; 30 3), (137; 23 1),
(246; 154), (137; 105),
(346; 03 3), (127; 512),
(146; 242), (2 $37 ; 35$ 2),
(12345; 403025230 3),
(12345; 3311044440),
(12345; 1542431534).
Lemma 2.9. There exists a $\{3,5\}$-frame of type $\left(6 ; 3^{3}\right)^{5}\left(12 ; 5^{3}\right)^{1}$.
Proof. A uniform $\{3,5\}-\mathrm{LF}_{6}$ of type $\left(1 ; 3^{3}\right)^{5}\left(2 ; 5^{3}\right)^{1}$ is given in Example 2.8. Therefore, the assertion follows by Theorem 2.5.

3. Recursive constructions and first results

We now describe some constructions which we will use later. Filling groups and holes with PBDs or GDDs is known as basic construction [6,7]. Here, groups and holes are filled with URDs to get new URDs.

Construction 3.1 (Breaking up Groups). Suppose there exists an $\operatorname{RGDD}\left(k_{1}, g ; i \cdot g\right)$ and a $\operatorname{URD}\left(\left\{k_{1}, k_{2}\right\} ; g\right)$ with $r_{k_{2}}=j$, then there exists $a \operatorname{URD}\left(\left\{k_{1}, k_{2}\right\} ; i \cdot g\right)$ with $r_{k_{2}}=j$ and an IURD $\left(\left\{k_{1}, k_{2}\right\} ; i \cdot g\right)$ with a hole of size $g, r_{k_{1}}=\frac{(i-1) \cdot g}{k_{1}-1} \quad k_{1}-p c s$, $r_{k_{1}}^{\circ}=\frac{g-1-\left(k_{2}-1\right) \cdot j}{k_{1}-1}$ holey (or partial) $k_{1}-p c s, r_{k_{2}}=0 \quad k_{2}-p c s$ and $r_{k_{2}}^{\circ}=j$ holey $k_{2}-p c s$.
Proof. Fill all groups of the RGDD with the URD to obtain the URD. Leave only one group empty to get the IURD.
Construction 3.2 (Generalized Frame Construction). Suppose there is a k_{1}-frame of type $T=\left\{t_{i}: i=1, \ldots, n\right\}$, i.e. $v=$ $\sum_{i=1}^{n} t_{i}$. If there exists an IURD $\left(\left\{k_{1}, k_{2}\right\} ; t_{i}+s\right)$ with a hole of size $s, r_{k_{1}}=\frac{t_{i}}{k_{1}-1}, r_{k_{1}}^{\circ}=\frac{s-1-\left(k_{2}-1\right) \cdot j_{2}}{k_{1}-1}, r_{k_{2}}=0$ and $r_{k_{2}}^{\circ}=j_{2}$ for $i=$ $1, \ldots, n-1$, then there exists an IURD $\left(\left\{k_{1}, k_{2}\right\} ; v+s\right)$ with a hole of size $t_{n}+s, r_{k_{1}}=\frac{\sum_{i=1}^{n-1} t_{i}}{k_{1}-1}, r_{k_{1}}^{\circ}=\frac{t_{n}}{k_{1}-1}+\frac{s-1-\left(k_{2}-1\right) \cdot j_{2}}{k_{1}-1}, r_{k_{2}}=0$ and $r_{k_{2}}^{\circ}=j_{2}$. If there exists a $\operatorname{URD}\left(\left\{k_{1}, k_{2}\right\} ; t_{n}+s\right)$ with $r_{k_{2}}=j_{2}$ and therefore $r_{k_{1}}=\frac{t_{n}}{k_{1}-1}+\frac{s-1-\left(k_{2}-1\right) \cdot j_{2}}{k_{1}-1}$, then a $\operatorname{URD}\left(\left\{k_{1}, k_{2}\right\} ; v+s\right)$ with $r_{k_{2}}=j_{2}$ exists.

Proof. First, fill all holes, up to the last one with IURDs. This gives the IURD. The hole of the frame with size t_{i} has $\frac{t_{i}}{k_{1}-1} k_{1}-\mathrm{pcs}$, which can be extended with the k_{1}-pcs from the IURD. The holey pcs from all this IURDs combine to holey pcs of the new $\operatorname{IURD}\left(\left\{k_{1}, k_{2}\right\} ; v+s\right)$ with a hole of size $t_{n}+s$. These are j_{2} holey k_{2}-pcs and $\frac{s-1-\left(k_{2}-1\right) \cdot j_{2}}{k_{1}-1}$ holey $k_{1}-$ pcs. $\frac{t_{n}}{k_{1}-1}$ holey $k_{1}-\mathrm{pcs}$ are from the hole of size t_{n} of the frame. Filling the last hole with the $\operatorname{URD}\left(\left\{k_{1}, k_{2}\right\} ; t_{n}+s\right)$ with $r_{k_{2}}=j_{2}$ results in the $\operatorname{URD}\left(\left\{k_{1}, k_{2}\right\} ; v+s\right)$ with $r_{k_{2}}=j_{2}$.

Remark. If in Construction 3.2 all IURDs derive from Construction 3.1 with $r_{k_{2}}^{\circ}=j_{2}$ and if the given URD has $r_{k_{2}}=j_{2}$, then all additional conditions in Construction 3.2 are fulfilled. In this paper, almost all IURDs derive from Construction 3.1.

Construction 3.3 (Weighting [6]). Let ($X, \boldsymbol{G}, \boldsymbol{B}$) be a GDD, and let $w: X \rightarrow Z^{+} \cup 0$ be a weight function on X. Suppose that for each block $B \in \mathbf{B}$, there exists a K-frame of type $\{w(x): x \in B\}$. Then there is a K-frame of type $\left\{\sum_{x \in G_{i}} w(x): G_{i} \in \mathbf{G}\right\}$.

Construction 3.4 (Tripling [4]). If there exists a uniform K-frame of type $g_{1}^{u_{1}} \ldots g_{s}^{u_{s}}$ and for each $k \in K$ there exists an $R T D(3, k)$ (i.e. there are no blocks of size 2 or 6), then a uniform $\{\{3\} \cup K\}$-frame of type $\left(3 g_{1}\right)^{u_{1}} \cdots\left(3 g_{s}\right)^{u_{s}}$ exists.

Proof. Expand each point of the K-frame three times. Place an $\operatorname{RTD}(3, k)$ on each expanded block of a block of size k in such a way that one parallel class of blocks of size 3 is the expansion of each point. Remove this parallel class to obtain the design.

Please note that for $k \neq 3$ the number of parallel classes with blocks of size k is the same in both frames. Now, a Wilson type construction is shown, where each point of a master design is expanded and the resulting large blocks are filled with so-called ingredient designs.

Theorem 3.5. There exists $a \operatorname{URD}(\{3,5\} ; 60 \cdot t+15)$ with $r_{5} \leq 5 \cdot t+1$ for $t \geq 1, t \notin\{2,17,23,32\}$.
Proof. By Theorem 1.2 we can take as a master design an $\operatorname{RPBD}(5 ; 20 \cdot t+5)$ for $t \geq 1, t \notin\{2,17,23$, 32$\}$, which has $5 \cdot t+1$ parallel classes. Expand all points of this master design three times. By Theorem 1.3 there exists an RGDD(3, 3; 15), which is our first ingredient design. There exists a $\operatorname{URD}(\{3,5\} ; 15)$ with $r_{5}=1$ by Theorem 1.9 . We take one parallel class of blocks of size $3(3-\mathrm{pc})$ as groups and get an $\operatorname{RGDD}(\{3,5\}, 3 ; 15)$ with $r_{5}=1$ as the second ingredient design. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way so that several uniform parallel classes are created. Each 5-pc of the master design results in zero or one new 5-pc, therefore it is $r_{5} \leq 5 \cdot t+1$. Lastly all expanded points form a 3-pc.

Theorem 3.6. If there exists $a \operatorname{URD}\left(\{3,5\} ; v_{0}\right)$ with $r_{3}>0, r_{5}=m>0$, then there exists $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=m$, and an $\operatorname{IURD}(\{3,5\} ; v)$ with $r_{5}^{\circ}=m$ and a hole of size v_{0}, for all $v \equiv v_{0}\left(\bmod \left(2 \cdot v_{0}\right)\right), v \geq 3 \cdot v_{0}$.
Proof. Since there exists a $\operatorname{URD}\left(\{3,5\} ; v_{0}\right)$ with $r_{3}>0, r_{5}=m>0$, it is $v_{0} \equiv 15(\bmod 30)$ by Theorem 1.8. Therefore, there exists a 3-RGDD of type v_{0}^{n} for $n \equiv 1(\bmod 2), n \geq 3$ by Theorem 1.3. Filling the groups by the above URD $\left(\{3,5\} ; v_{0}\right)$ with $r_{5}=m$, results in the desired URD. Without filling one group, we get the IURD.

Corollary 3.7. There exist $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,3,4,5$, and an $\operatorname{IURD}(\{3,5\} ; v)$ with $r_{5}^{\circ}=2,3,4,5$ and a hole of size 45 , for all $v \equiv 45(\bmod 90), v \geq 135$.
Proof. A URD $(\{3,5\} ; 45)$ with $r_{5}=2,3,4,5$ exists by Lemma 2.7. Therefore, the assertion follows by Theorem 3.6.
Corollary 3.8. There exist a $\operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,3,4,5$, and an $\operatorname{IURD}(\{3,5\} ; v)$ with $r_{5}^{\circ}=2,3,4,5$ and a hole of size 75 , for all $v \equiv 75(\bmod 150), v \geq 225$.
Proof. A URD $(\{3,5\} ; 75)$ with $r_{5}=2,3,4,5$ exists by Theorem 3.5. Therefore, the assertion follows by Theorem 3.6.
The following frame results are based on ideas, which in [4] are developed for $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4}=3$.
Lemma 3.9. There exists $a\{5,6\}$-GDD of type $5^{4 t+1} u^{1}, 0 \leq u \leq 5 \cdot t$, for all $t \geq 1, t \notin\{2,17,23,32\}$.
Proof. There exists a 5-RGDD of type $5^{4 t+1}$ for $t \geq 1, t \notin\{2,17,23,32\}$ with $5 t$ parallel classes by Theorem 1.2. Completing u parallel classes, results in the desired design.

Lemma 3.10. There exists $a\{3,5\}$-frame of type $\left(6 ; 3^{3}\right)^{5}\left(12 ; 3^{4} 5^{1}\right)^{1}$.
Proof. It is well known that a $\operatorname{TD}(4,5)$ exists, therefore also an $\operatorname{RTD}(3,5)$ and that is equivalent to a 3-RGDD of type 5^{3}. Deleting one point results in a $\{3,5\}$-frame of type $\left(2 ; 3^{1}\right)^{5}\left(4 ; 5^{1}\right)^{1}$. Construction 3.4 makes the desired frame.

Lemma 3.11. There exists a $\{3,5\}$-frame of type $\left(30 ; 3^{15}\right)^{4 t+1}\left(6 u+6 r ; 3^{3 u+r} 5^{r}\right)^{1}$ for $0 \leq r \leq u \leq 5 t, t \geq 1$, $t \notin$ $\{2,17,23,32\}$.
Proof. Take the $\{5,6\}$-GDD of type $5^{4 t+1} u^{1}$ from Lemma 3.9. Assign r points from the group of size u weight 12 and assign all other points weight 6 . There exist a 3 -frame of type 6^{5} and a 3 -frame of type 6^{6} by Theorem 1.4. By Lemma 3.10 there exists a $\{3,5\}$-frame of type $\left(6 ; 3^{3}\right)^{5}\left(12 ; 3^{4} 5^{1}\right)^{1}$. Take these frames in the weighting Construction 3.3 to get the result.
Theorem 3.12. If there exists a uniform $\{3,5\}$-frame of type $\left(g_{1} ; 3^{\frac{g_{1}}{2}}\right)^{s}\left(g_{2} ; 3^{\frac{g_{2}-4 . r}{2}} 5^{r}\right)^{1}$ and $w \equiv 3$ (mod 6) is such that $g_{1}+w \equiv 3(\bmod 6), 2 \cdot w \leq g_{1}$, then there exists an $\operatorname{IURD}\left(\{3,5\} ; g_{1} \cdot s+g_{2}+w\right)$ with a hole of size $g_{2}+w, r_{5}^{\circ}=r, r_{5}=0$ and $r_{3}^{\circ}=\frac{w-1}{2}$. If there exists $a \operatorname{URD}\left(\{3,5\} ; g_{2}+w\right)$ with $r_{5}=r$, and therefore $r_{3}=\frac{g_{2}+w-1-4 \cdot r}{2}$, then there exists a $\operatorname{URD}\left(\{3,5\} ; g_{1} \cdot s+g_{2}+w\right)$ with $r_{5}=r$.
Proof. First, add w infinite points on the frame. Then, fill each group G of size g_{1} together with the w infinite points with the resolvable incomplete design $\operatorname{RIPBD}\left(3 ; g_{1}+w\right)$ with a hole of size w and $r_{3}^{\circ}=(w-1) / 2$, which exists by Theorem 1.5, in such a way that the hole is filled with the infinite points. Each such group G has $g_{1} / 2$ frame-3-pcs, which can be extended with the $g_{1} / 2$ parallel classes of the $\operatorname{RIPBD}\left(3 ; g_{1}+w\right)$ with a hole of size w. All $(w-1) / 2$ holy 3 -pcs are left over. The result is the IURD. The group G_{2} of size g_{2} together with the w infinite points will be filled with the $\operatorname{URD}\left(\{3,5\} ; g_{2}+w\right)$ with $r_{5}=r$ and $r_{3}=\frac{g_{2}+w-1-4 \cdot r}{2}$. The $\left(g_{2}-4 r\right) / 2$ frame-3-pcs and also the r frame-5-pcs can be extended with pcs from the given URD. There remain $(w-1) / 2$ parallel classes of size 3 of the given URD. These join with the 3 -pcs of the other groups to $(w-1) / 2$ additional 3-pcs of the new URD.

4. Results for URDs with exactly 3 parallel classes with blocks of size 5

We use the frame in Lemma 2.9 to construct an IURD and with it the URDs.
Lemma 4.1. There exists an $\operatorname{IURD}(\{3,5\} ; 30+15)$ with a hole of size $15, r_{3}=15, r_{5}=0, r_{3}^{\circ}=1, r_{5}^{\circ}=3$.
Proof. Take the $\{3,5\}$-frame of type $\left(6 ; 3^{3}\right)^{5}\left(12 ; 5^{3}\right)^{1}$ from Lemma 2.9. Adjoin 3 infinite points to the frame and fill all groups of size 6 with a 3 -RGDD of type 3^{3}, where the infinite points form one group. The 3 pcs of the RGDD extend the 3 holey pcs of the frame, therefore is $r_{3}=15$. Together all groups of the above RGDDs become one holey $3-\mathrm{pc}$, i.e. $r_{3}^{\circ}=1$. The group of size 12 of the frame and the infinite points give the hole of size 15 and $r_{5}^{\circ}=3$.

Theorem 4.2. There exists $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=3$ if, and only if, $v \equiv 15(\bmod 30)$ except for $v=15$, and except possibly for $v=105$.

Proof (Use of Construction 3.2). Adjoin 15 infinite points to a 3-frame of type $30^{n}, n \geq 4$ (Theorem 1.4) and fill all groups except one group together with the infinite points with an $\operatorname{IURD}(\{3,5\} ; 45)$ with $r_{5}^{\circ}=3$ and a hole of size 15 , which is given in Lemma 4.1, where the infinite points form the hole. For each group the 153 -pcs from the frame can be extended with the 153 -pcs from the IURD. This gives an $\operatorname{IURD}(\{3,5\} ; 30 \cdot n+15)$ with a hole of size $45, r_{3}=15 \cdot(n-1), r_{5}=0$, $r_{3}^{\circ}=1, r_{5}^{\circ}=3$. Fill the last group together with the infinite points with a $\operatorname{URD}(\{3,5\} ; 45)$ with $r_{5}=3$ and $r_{3}=16$, which is given in Lemma 2.7. The 16 3-pcs from the URD complete all 15 3-pcs from the group of the frame and the only holy 3-pc from the IURD resulting in a $\operatorname{URD}(\{3,5\} ; 30 \cdot n+15)$ with $r_{5}=3$. $\operatorname{AURD}(\{3,5\} ; 75)$ with $r_{5}=3$ is provided in Theorem 3.5. A URD $(\{3,5\} ; 15)$ with $r_{5}=3$ cannot exist by the second necessary condition in Theorem 1.8.

5. Results for URDs with exactly 2,4 or 5 parallel classes with blocks of size 5

In this section all results are given for $r_{5}=2,4,5$ at the same time. All values, which are different for this values are written down separated with commas, for instance $u=8,6,5$ in the proof of Lemma 5.3. The results are given for the four residue classes $15,45,75,105$ modulo 120 , whereas 15 and 75 are given as 15 modulo 60 .

Lemma 5.1. There exists $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,4,5$ for all $v \equiv 15(\bmod 60)$ except for $v=15$.
Proof. By Theorem 3.5 there exists a URD $(\{3,5\} ; 60 \cdot t+15)$ with $r_{5}=2,4,5$ for $t \geq 1, t \notin\{2,17,23,32\}$. For $v \in\{135,1035,1395,1935\}$ there exists a $\operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,4,5$ by Corollary 3.7 . By the second necessary condition in Theorem 1.8 a URD ($\{3,5\} ; 15)$ with $r_{5}=2,4,5$ cannot exist.

Lemma 5.2. There exists $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,4,5$ for all $v \equiv 45(\bmod 120)$ except possibly when $v \in\{165,285\}$.
Proof. By Corollary 3.7 there exists a $\operatorname{URD}(\{3,5\} ; 135)$ with $r_{5}=2,4$, 5 . Let $w=15, g_{1}=30, s=4 t+1, g_{2}=120$, $u=18,16,15$. Use this design, Lemma 3.11 and Theorem 3.12 to get a URD $(\{3,5\} ; 30 \cdot(4 t+1)+135)$ with $r_{5}=2,4,5$ for $t \geq 4,4,3, t \notin\{2,17,23,32\}$. For $v \in\{405,2205,2925,4005\}$ there exists a $\operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,4,5$ by Corollary 3.7. There exists a URD $(\{3,5\} ; 45)$ with $r_{5}=2,4,5$ by Lemma 2.7. A URD ($\{3,5\} ; 525$) with $r_{5}=2,4,5$ exists by Corollary 3.8.

Lemma 5.3. There exists $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,4,5$ for all $v \equiv 105(\bmod 120)$ except possibly when $v \in$ $\{105,345,2145,2865,3945\}$. Also, there exists an $\operatorname{IURD}(\{3,5\} ; 465)$ with $r_{5}^{\circ}=2,4,5$ and a hole of size 75.
Proof. Let $w=15, g_{1}=30, s=4 t+1, g_{2}=60, u=8,6,5$. Use a URD $(\{3,5\} ; 75)$ with $r_{5}=2,4,5$ (see Theorem 3.5), Lemma 3.11 and Theorem 3.12 getting a URD $(\{3,5\} ; 30 \cdot(4 t+1)+75)$ with $r_{5}=2,4,5$ for $t \geq 3,3,1, t \notin\{2,17,23,32\}$. A URD (\{3,5\};225) is given in Corollary 3.7. Without filling the hole of size g_{2} of the frame, we get IURDs. Particularly for $t=3$ an $\operatorname{IURD}(\{3,5\} ; 465)$ with $r_{5}^{\circ}=2,4,5$ and a hole of size $g_{2}+w=75$ is obtained.
Now, 3 from the undecided cases of Lemma 5.3 will be constructed with GDDs.
Lemma 5.4. There exists $a \operatorname{URD}\left(\{3,5\}\right.$; 2145) with $r_{5}=2,4,5$.
Proof. Take a 4-GDD of type $39^{4} 51^{1}$, which exists by Theorem 1.1. Apply Construction 3.3 with weight 10 and 3-frames of type 10^{4}, which exists by Theorem 1.4. The result is a 3 -frame of type $390^{4} \cdot 510^{1}$. Take the IURD $(\{3,5\} ; 390+75)$ with $r_{5}^{\circ}=2,4,5$ and a hole of size 75 , which is given in Lemma 5.3. Adjoin 75 infinite points to the frame and fill all groups of size 390 with this IURD, where the infinite points form the hole. Fill the group of size 510 together with the infinite points with a $\operatorname{URD}(\{3,5\} ; 585)$ with $r_{5}=2,4,5$, which is also given in Lemma 5.3. This results in the required design.

Lemma 5.5. There exists $a \operatorname{URD}\left(\{3,5\}\right.$; 2865) with $r_{5}=2,4,5$.
Proof. Take a 4-GDD of type $60^{4} 39^{1}$, which exists by Theorem 1.1. Apply Construction 3.3 with weight 10 and 3 -frames of type 10^{4}, which exists by Theorem 1.4. The result is a 3 -frame of type $600^{4} \cdot 390^{1}$. By Corollary 3.8 there exists an $\operatorname{IURD}(\{3,5\} ; 600+75)$ with $r_{5}=2,4,5$ and a hole of size 75 . Adjoin 75 infinite points to the frame and fill all groups of size 600 with this IURD, where the infinite points form the hole. Fill the group of size 390 together with the infinite points with a $\operatorname{URD}(\{3,5\} ; 465)$ with $r_{5}=2,4,5$, which is given in Lemma 5.3. This results in the required design.

Lemma 5.6. There exists $a \operatorname{URD}(\{3,5\} ; 3945)$ with $r_{5}=2,4,5$.
Proof. Take the 4-GDD of type $81^{4} 66^{1}$, which exists by Theorem 1.1. Apply Construction 3.3 with weight 10 and 3-frames of type 10^{4}, which exists by Theorem 1.4. The result is a 3-frame of type $810^{4} \cdot 660^{1}$. By Corollary 3.7 there exists an $\operatorname{IURD}(\{3,5\} ; 810+45)$ with $r_{5}=2,4,5$ and a hole of size 45 . Adjoin 45 infinite points to the above frame and fill all groups of size 810 with this IURD, where the infinite points form the hole. Fill the group of size 660 together with the infinite points with a URD $(\{3,5\} ; 705)$ with $r_{5}=2,4,5$, which is given in Lemma 5.3. This results in the required design.

All lemmas and theorems of the preceding two sections give our main theorem:
Theorem 5.7. There exists $a \operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,3,4,5$ if, and only if, $v \equiv 15(\bmod 30)$ except $v=15$, and except possibly

$$
\begin{aligned}
& v=105 \quad \text { for } r_{5}=3 \\
& v \in\{105,165,285,345\} \quad \text { for } r_{5}=2,4,5
\end{aligned}
$$

Acknowledgements

The author thanks the referees for their careful reading and many valuable comments and suggestions.

References

[1] R.J.R. Abel, Some new near resolvable BIBDs with $k=7$ and resolvable BIBDs with $k=5$, Australas. J. Combin. 37 (2007) 141-146.
[2] R.J.R. Abel, G. Ge, M. Greig, L. Zhu, Resolvable balanced incomplete block designs with block size 5, J. Stat. Plann. Inference 95 (2001) 49-65.
[3] T. Beth, D. Jungnickel, H. Lenz, Design Theory, second ed., Cambridge University Press, Cambridge, 1999.
[4] P. Danziger, Uniform restricted resolvable designs with $r=3$, Ars Combin. 46 (1997) 161-176.
[5] P. Danziger, E. Mendelsohn, Uniformly resolvable designs, JCMCC 21 (1996) 65-83.
[6] S.C. Furino, Y. Miao, J.X. Yin, Frames and Resolvable Designs: Uses, Constructions and Existence, CRC Press, Boca Raton, Fl, 1996.
[7] G. Ge, Resolvable group divisible designs with block size four and index three, Discrete Math. 306 (2006) 52-65.
[8] G. Ge, R.S. Rees, On group-divisible designs with block size four and group-type $g^{u} m^{1}$, Des. Codes Cryptogr. 27 (2002) 5-24.
[9] R.S. Rees, Group-divisible designs with block size k having $k+1$ groups for $k=4,5$, J. Combin. Des. 8 (2000) 363-386.
[10] R.S. Rees, Two new direct product-type constructions for resolvable group-divisible designs, J. Combin. Des. 1 (1993) 15-26.
[11] R. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, J. Combin. Theory Ser. A 45 (1987) 207-225.
[12] R.S. Rees, D.R. Stinson, Frames with block size four, Canad. J. Math. 44 (1992) 1030-1049.
[13] R.S. Rees, D.R. Stinson, On combinatorial designs with subdesigns, Discrete Math. 77 (1989) 259-279.
[14] E. Schuster, Uniformly resolvable designs with index one and block sizes three and four-with three or five parallel classes of block size four, Discrete Math. (2008) doi:10.1016/j.disc.2008.05.057.
[15] H. Shen, Constructions and uses of labeled resolvable designs, in: W.D. Wallis (Ed.), Combinatorial Designs and Applications, Marcel Dekker, New York, 1990, pp. 97-107.
[16] H. Shen, J. Shen, Existence of resolvable group divisible designs with block size four I, Discrete Math. 254 (2002) 513-525.
[17] H. Shen, M. Wang, Existence of labeled resolvable block designs, Bull. Belg. Math. Soc. 5 (1998) 427-439.

[^0]: E-mail address: Ernst.Schuster@imise.uni-leipzig.de.

