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a b s t r a c t

Each parallel class of a uniformly resolvable design (URD) contains blocks of only one block
size k (denoted k-pc). The number of k-pcs is denoted rk. The necessary conditions for URDs
with v points, index one, blocks of size 3 and 5, and r3, r5 > 0, are v ≡ 15 (mod 30). If
rk > 1, then v ≥ k2, and r3 = (v−1−4 · r5)/2. For r5 = 1 these URDs are known as group
divisible designs. We prove that these necessary conditions are sufficient for r5 = 3 except
possibly v = 105, and for r5 = 2, 4, 5 with possible exceptions (v = 105, 165, 285, 345)
New labeled frames and labeled URDs, which give new URDs as ingredient designs for
recursive constructions, are the key in the proofs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Let v and λ be positive integers and let K and M be two sets of positive integers. A group divisible design, denoted
GDDλ(K ,M; v), is a triple (X , G , B), where X is a set with v elements (called points), G is a set of subsets (called groups)
of X , G partitions X , and B is a collection of subsets (called blocks) of X in such a way that:
1. |B| ∈ K for each B ∈ B;
2. |G| ∈ M for each G ∈ G;
3. |B ∩ G| ≤ 1 for each B ∈ B and G ∈ G; and
4. each pair of elements of X from distinct groups is contained in exactly λ blocks.

The notation is similar to that used in [3]. Unless otherwise stated, the element set X of a design with v points is labeled
1, 2, . . . , v. If λ = 1, the index λ is omitted. If K = {k}, respectively M = {m}, then the GDDλ(K ,M; v) is simply denoted
GDDλ(k,M; v), respectively GDDλ(K ,m; v), which is also specified in ‘‘exponential’’ form as K − GDDλ of type mv/m. A
GDDλ(K , 1; v) is called a pairwise balanced design and denoted PBDλ(K ; v).

Theorem 1.1 ([8,9]). There exists a 4-GDD of type g4m1 with m > 0 if, and only if, g ≡ m ≡ 0 (mod 3) and 0 < m ≤ 3g/2.

In a GDDλ(K ,M; v) (X,G, B), a parallel class (pc) is a set of blocks which partitions X . If B can be partitioned into parallel
classes, then the GDDλ(K ,M; v) is said to be resolvable and denoted RGDDλ(K ,M; v). Analogously, a resolvable PBDλ(K ; v)
is denoted RPBDλ(K ; v). A parallel class is said to be uniform if it contains blocks of only one size k (k-pc). If all of the parallel
classes of an RPBDλ(K ; v) (RGDDλ(K ,M; v)) are uniform, the design is said to be uniformly resolvable. A uniformly resolvable
design RPBDλ(K ; v) (RGDDλ(K ,M; v)) is denoted by URDλ(K ; v) (UGDDλ(K ,M; v)). If λ = 1, the index λ is omitted. In a
URDλ(K ; v)(UGDDλ(K ,M; v)) the number of uniformly resolution classes with blocks of size k, is denoted rk.
All RPBD(5; v) are known apart from four possible exceptions.
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Theorem 1.2 ([1,2]). There exists a 5-RGDD of type 54t+1 for t ≥ 1, t 6∈ {2, 17, 23, 32}.

Theorem 1.3 ([10,16]). There exists an RGDD(3,m; v) if, and only if, v ≡ 0 (mod m), v ≥ 3 · m, v ≡ 0 (mod 3) and
v −m ≡ 0 (mod 2), except when (v,m) = (6, 2), (12, 2), (18, 3).

A resolvable transversal design RTDλ(k, g), is equivalent to an RGDDλ(k, g; k · g). That is, each block in an RTDλ(k, g)
contains a point from each group. A K -frameλ is a GDD (X,G, B) with index λ, in which B can be partitioned into holey
parallel classes (each of which partitions X \G for some G ∈ G). We use the usual exponential notation for the types of GDDs
and frames. Thus a GDD or a frame of type 1i 2j, . . . is one in which there are i groups of size 1, j groups of size 2, and so on.
A K -frame is said to be uniform if each partial parallel class is of only one block size. It is said to be completely uniform if for
each hole G the resolution classes which partition X \ G are all of one block size. We use only K = {3, 5}. A {3, 5}-frameλ of
type (g; 3n1 · 5n2)u(m; 3n3 · 5n4)1 has u groups of size g . Each group of size g has n1 holey pcs of block size 3 and n2 holey
pcs of block size 5. The only group of sizem has n3 holey pcs of block size 3 and n4 holey pcs of block size 5.

Theorem 1.4 ([12]). For k = 2 and k = 3 there exists a k-frame of type hu if, and only if, u ≥ k+ 1, h ≡ 0 (mod k− 1), and
h · (u− 1) ≡ 0 (mod k).

Later on, some incomplete group divisible designs will be used. An incomplete group divisible design (IGDD) with block
sizes from a set K and index unity is a quadruple (X,G,H, B), which satisfies the following properties:

1. G = {G1, G2, . . . , Gn} is a partition of the set X of points into subsets called groups;
2. H is a subset of X called the hole;
3. B is a collection of subsets of X with cardinality from K , called blocks, such that a group and a block contain at most one
common point; and

4. every pair of points from distinct groups is either contained in H or occurs in a unique block but not both.

This design is denoted by IGDD(K ,M; v) of type T , where M = {|G1| , |G2| , . . . , |Gn|} and T is the multiset
{(|Gi| , |Gi ∩ H|) : 1 ≤ i ≤ n}. Sometimes, ‘‘exponential’’ notation is used to describe the type. An IGDD(K ,M; v) of type
T is said to be uniformly resolvable and denoted by UIGDD(K ,M; v) of type T if its blocks can be partitioned into uniformly
parallel classes and partial uniformly parallel classes, the latter partitioning X \H . The numbers of uniformly parallel classes
and partial uniformly parallel classes are denoted by rk and r◦k , respectively. If |Gi| = 1 for 1 ≤ i ≤ n then the UIGDD is
called an incomplete uniformly resolvable design IURD(K ; v) with a hole H .

Theorem 1.5 ([13]). For any v ≡ 3 (mod 6) and w ≡ 3 (mod 6) such that v ≥ 3w there is an RIPBD(3; v) with a hole of size
w and (w − 1)/2 holey 3-pcs, that is a 3-UIGDD of type 1v−ww1 with r◦3 = (w − 1)/2.

Some known results about URDs are summarized in the following. Rees introduced in [11] URDs and showed:

Theorem 1.6 ([11]). There exists a URD ({2, 3} ; v) with r2, r3 > 0 if, and only if,

1. v ≡ 0 (mod 6);
2. r2 = v − 1− 2 · r3

(
r3 =

v−1−r2
2

)
; and

3. 1 ≤ r3 ≤ v
2 − 1;

with the two exceptions (v, r3) 6= (6, 2), (12, 5).

Theorem 1.7 ([4,14]). There exists a design URD ({3, 4} ; v) with r4 = 3 or 5 if, and only if, v ≡ 0 (mod 12) except when
v = 12.

Theorem 1.8 (See [5] Theorems 1.1 and 3.6). The necessary conditions for the existence of a URD({3, 5} ; v)with r3, r5 > 0 are:

1. v ≡ 15 (mod 30);
2. if rk > 1, then v ≥ k2; and
3. r5 =

v−1−2·r3
4 ,

(
r3 =

v−1−4·r5
2

)
.

The third condition means that if r3 is given, then r5 is determined, and vice versa. The only known result with r5 > 0 is a
special case of Theorem 1.3. We take the groups as an additional parallel class to get the URD.

Theorem 1.9. There exists a 3 - RGDD of type 53·(2n+1), n ≥ 0; and also a URD ({3, 5} ; v)with r5 = 1 for all v ≡ 15 (mod 30).

In the next section labeled resolvable designs are introduced. We construct some new labeled uniformly resolvable designs
which will be used as ingredients for our main recursive constructions in Section 3. The results will be given in the last two
sections.
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2. Labeled resolvable designs and direct constructions

The concept of labeled resolvable designs is needed in order to get direct constructions for resolvable designs. This
concept was introduced by Shen [15,17,16].
Let (X, B) be a (U)GDDλ(K ,M; v) where X = {a1, a2, . . . , av} is totally ordered with ordering a1 < a2 < · · · < av . For

each block B = {x1, x2, . . . , xk}, k ∈ K , it is supposed that x1 < x2 < · · · < xk. Let Zλ be the group of residues modulo λ.

Let ϕ : B → Z

(
k
2

)
λ be a mapping where for each B = {x1, x2, . . . , xk} ∈ B, k ∈ K , ϕ(B) = (ϕ(x1, x2), . . . , ϕ(x1, xk),

ϕ(x2, x3), . . . , ϕ(x2, xk), ϕ(x3, x4), . . . , ϕ(xk−1, xk)), ϕ(xi, xj) ∈ Zλ for 1 ≤ i < j ≤ k.
A (U)GDDλ(K ,M; v) is said to be a labeled (uniform resolvable) group divisible design, denoted L(U)GDDλ(K ,M; v), if there

exists a mapping ϕ such that:
1. For each pair {x, y} ⊂ X with x < y, contained in the blocks B1, B2, . . . , Bλ, then ϕi(x, y) ≡ ϕj(x, y) if, and only if, i = j
where the subscripts i and j denote the blocks to which the pair belongs, for 1 ≤ i, j ≤ λ; and

2. For each block B = {x1, x2, . . . , xk}, k ∈ K , ϕ(xr , xs)+ ϕ(xs, xt) ≡ ϕ(xr , xt) (mod λ), for 1 ≤ r < s < t ≤ k.

Its blocks will be denoted in the following form:

(x1x2 · · · xk;ϕ(x1, x2) · · ·ϕ(x1, xk)ϕ(x2, x3) · · ·ϕ(x2, xk)ϕ(x3, x4) · · ·ϕ(xk−1, xk)), k ∈ K .

The above definition was first used in [14] and is a little bit more general than the definition by Shen [16] with K = {k} or
Shen and Wang [17] for transversal designs. As a special case of type 1v , a labeled URDλ(K ; v), is denoted by LURDλ(K ; v).
A labeled K -frame of type T and index λ is denoted K -LFλ of type T .
The following designs were constructed by a computer.

Example 2.1. The following is an example of an LURD3 ({3, 5} ; 15)with r5 = 2, where each row forms a uniformly parallel
class:
(6 7 13; 0 1 1), (1 3 11; 1 0 2), (12 14 15; 2 2 0), (2 5 8; 2 2 0), (4 9 10; 2 1 2),
(6 7 14; 2 1 2), (5 9 11; 0 2 2), (8 13 15; 1 0 2), (3 4 12; 2 1 2), (1 2 10; 2 0 1),
(7 10 14; 2 1 2), (2 4 11; 2 2 0), (3 5 12; 0 0 0), (9 13 15; 2 2 0), (1 6 8; 0 2 2),
(1 4 13; 2 1 2), (6 8 10; 0 2 2), (5 14 15; 0 2 2), (2 9 12; 2 0 1), (3 7 11; 0 1 1),
(1 4 5; 1 2 1), (2 3 13; 1 1 0), (10 11 14; 2 1 2), (6 7 9; 1 0 2), (8 12 15; 1 1 0),
(1 9 10; 0 1 1), (4 6 14; 0 0 0), (3 5 8; 1 0 2), (2 7 15; 2 1 2), (11 12 13; 2 2 0),
(10 13 15; 0 1 1), (6 9 11; 1 2 1), (3 5 7; 2 2 0), (1 2 12; 1 2 1), (4 8 14; 1 2 1),
(2 4 8; 0 0 0), (7 9 15; 1 1 0), (3 6 11; 2 0 1), (5 10 12; 2 2 0), (1 13 14; 0 1 1),
(7 8 13; 2 2 0), (2 5 9; 1 0 2), (1 11 14; 1 2 1), (6 12 15; 2 0 1), (3 4 10; 1 1 0),
(2 3 6; 2 2 0), (4 8 9; 2 1 2), (1 11 15; 2 1 2), (7 12 14; 2 0 1), (5 10 13; 1 2 1),
(1 7 10; 2 2 0), (6 9 13; 2 0 1), (3 8 14; 1 0 2), (4 5 12; 0 1 1), (2 11 15; 0 0 0),
(7 8 11; 0 0 0), (3 10 12; 0 2 2), (1 5 6; 0 2 2), (4 9 15; 0 1 1), (2 13 14; 0 2 2),
(2 6 8; 0 1 1), (1 3 9; 0 2 2), (4 14 15; 1 2 1), (5 7 10; 2 0 1), (11 12 13; 1 0 2),
(4 6 11; 1 1 0), (3 13 14; 2 2 0), (8 9 10; 0 0 0), (1 5 15; 1 2 1), (2 7 12; 1 2 1),
(1 4 7; 0 1 1), (2 10 14; 0 0 0), (3 9 13; 1 1 0), (8 11 12; 2 2 0), (5 6 15; 1 0 2),
(5 8 13; 1 0 2), (10 11 15; 1 2 1), (3 9 14; 0 1 1), (1 6 12; 1 1 0), (2 4 7; 1 0 2),
(8 10 11; 1 1 0), (3 4 15; 0 0 0), (5 6 14; 0 2 2), (7 9 12; 0 0 0), (1 2 13; 0 2 2),
(1 3 7 8 15; 2 0 1 0 1 2 1 1 0 2), (4 6 10 12 13; 2 2 0 1 0 1 2 1 2 1), (2 5 9 11 14; 0 1 1 1 1 1 1 0 0 0),
(4 5 7 11 13; 2 0 2 0 1 0 1 2 0 1), (1 8 9 12 14; 0 1 0 0 1 0 0 2 2 0), (2 3 6 10 15; 0 1 2 2 1 2 2 1 1 0).

Example 2.2. An LURD3 ({3, 5} ; 15)with r5 = 3, where each row forms a uniformly parallel class:
(3 4 15; 1 2 1), (5 6 13; 1 0 2), (8 9 12; 2 2 0), (1 7 10; 2 2 0), (2 11 14; 0 2 2),
(6 7 12; 1 0 2), (10 11 15; 0 0 0), (2 4 8; 0 2 2), (3 13 14; 0 1 1), (1 5 9; 1 2 1),
(4 8 11; 0 1 1), (1 7 12; 0 0 0), (6 9 14; 0 1 1), (2 3 13; 1 2 1), (5 10 15; 2 0 1),
(2 5 10; 1 2 1), (7 9 11; 0 2 2), (1 3 4; 2 1 2), (6 12 15; 2 2 0), (8 13 14; 1 0 2),
(2 10 12; 0 0 0), (3 9 14; 2 2 0), (6 8 15; 0 0 0), (1 7 13; 1 0 2), (4 5 11; 0 0 0),
(11 12 13; 0 2 2), (4 5 7; 2 2 0), (6 8 14; 1 0 2), (1 2 15; 2 1 2), (3 9 10; 1 2 1),
(1 8 11; 2 1 2), (3 7 15; 2 1 2), (2 9 14; 2 1 2), (5 6 13; 2 2 0), (4 10 12; 2 1 2),
(1 3 9; 1 1 0), (4 6 12; 1 2 1), (10 13 15; 0 2 2), (7 8 14; 2 0 1), (2 5 11; 0 2 2),
(12 14 15; 2 1 2), (1 9 10; 0 0 0), (4 5 13; 1 2 1), (2 6 7; 0 0 0), (3 8 11; 0 0 0),
(7 10 14; 1 2 1), (2 3 6; 0 1 1), (4 9 13; 0 1 1), (11 12 15; 2 1 2), (1 5 8; 0 0 0),
(3 11 15; 1 0 2), (5 7 9; 1 0 2), (4 8 10; 1 0 2), (1 6 14; 1 0 2), (2 12 13; 2 0 1),
(5 11 14; 1 1 0), (3 4 7; 0 0 0), (1 6 15; 2 0 1), (8 10 13; 1 0 2), (2 9 12; 0 1 1),
(1 2 10; 0 1 1), (5 14 15; 0 1 1), (7 11 13; 0 1 1), (4 6 9; 2 1 2), (3 8 12; 2 0 1),
(6 8 10; 2 2 0), (1 11 14; 0 1 1), (5 7 12; 2 0 1), (2 3 13; 2 1 2), (4 9 15; 2 0 1),
(9 11 12; 1 2 1), (3 5 6; 0 0 0), (1 13 15; 1 2 1), (2 7 8; 1 1 0), (4 10 14; 1 1 0),
(7 8 9 13 15; 1 1 0 0 0 2 2 2 2 0), (1 2 4 6 11; 1 0 0 2 2 2 1 0 2 2), (3 5 10 12 14; 1 1 2 0 0 1 2 1 2 1),
(1 4 12 13 14; 2 2 2 2 0 0 0 0 0 0), (3 6 7 10 11; 2 1 0 2 2 1 0 2 1 2), (2 5 8 9 15; 2 0 1 1 1 2 2 1 1 0),
(1 3 5 8 12; 0 2 1 1 2 1 1 2 2 0), (6 9 10 11 13; 1 0 1 1 2 0 0 1 1 0), (2 4 7 14 15; 1 2 0 0 1 2 2 1 1 0).
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Example 2.3. An LURD3 ({3, 5} ; 15)with r5 = 4, where each row forms a uniformly parallel class:
(1 13 14; 0 1 1), (2 9 15; 0 0 0), (5 8 11; 1 2 1), (3 10 12; 2 0 1), (4 6 7; 1 2 1),
(3 7 14; 2 0 1), (1 4 11; 1 0 2), (6 8 15; 2 1 2), (5 10 13; 0 1 1), (2 9 12; 1 1 0),
(4 6 9; 0 2 2), (8 13 14; 1 1 0), (1 7 10; 1 0 2), (2 3 5; 2 2 0), (11 12 15; 1 0 2),
(2 4 13; 2 1 2), (5 7 14; 1 1 0), (6 10 15; 2 2 0), (3 9 11; 0 1 1), (1 8 12; 0 0 0),
(2 6 14; 2 0 1), (8 10 13; 0 2 2), (1 9 15; 2 1 2), (3 11 12; 2 2 0), (4 5 7; 1 0 2),
(7 12 15; 1 1 0), (1 4 5; 0 2 2), (2 8 10; 2 1 2), (9 11 14; 0 0 0), (3 6 13; 1 1 0),
(5 8 12; 2 0 1), (4 9 11; 1 0 2), (3 7 15; 1 1 0), (1 6 14; 1 0 2), (2 10 13; 0 0 0),
(9 10 15; 2 1 2), (1 5 11; 0 1 1), (2 3 4; 0 0 0), (7 12 13; 0 0 0), (6 8 14; 1 0 2),
(4 8 9; 2 0 1), (5 13 15; 2 0 1), (1 7 12; 0 2 2), (6 10 11; 0 1 1), (2 3 14; 1 2 1),
(3 5 10; 2 1 2), (4 6 7; 2 1 2), (9 12 13; 1 2 1), (2 8 11; 1 1 0), (1 14 15; 2 2 0),
(11 12 14; 2 2 0), (1 3 13; 2 1 2), (4 8 10; 0 1 1), (2 7 9; 0 2 2), (5 6 15; 2 2 0),
(10 11 14; 2 0 1), (2 5 15; 0 1 1), (3 6 12; 0 1 1), (7 8 9; 1 0 2), (1 4 13; 2 2 0),
(4 10 12; 2 1 2), (1 2 15; 1 0 2), (5 6 11; 0 0 0), (9 13 14; 0 2 2), (3 7 8; 0 0 0),
(1 2 7 10 11; 0 2 2 2 2 2 2 0 0 0), (5 6 9 12 13; 1 2 1 0 1 0 2 2 1 2), (3 4 8 14 15; 1 2 2 0 1 1 2 0 1 1),
(1 2 6 8 12; 2 2 2 1 0 0 2 0 2 2), (3 4 11 13 15; 2 0 0 2 1 1 0 0 2 2), (5 7 9 10 14; 0 1 1 2 1 1 2 0 1 1),
(1 3 5 8 9; 0 1 1 1 1 1 1 0 0 0), (2 6 7 11 13; 1 1 0 2 0 2 1 2 1 2), (4 10 12 14 15; 0 0 2 1 0 2 1 2 1 2),
(1 3 6 9 10; 1 0 0 1 2 2 0 0 1 1), (7 8 11 13 15; 2 1 2 2 2 0 0 1 1 0), (2 4 5 12 14; 1 1 0 1 0 2 0 2 0 1).

Example 2.4. An LURD3 ({3, 5} ; 15)with r5 = 5, where each row forms a uniformly parallel class:
(1 2 6; 0 0 0), (3 13 14; 1 0 2), (4 5 9; 2 2 0), (7 8 12; 1 2 1), (10 11 15; 0 0 0),
(1 2 9; 1 2 1), (3 4 11; 0 0 0), (5 6 13; 2 2 0), (7 8 15; 0 1 1), (10 12 14; 0 1 1),
(1 3 5; 2 2 0), (2 4 6; 0 1 1), (7 14 15; 2 0 1), (8 10 12; 1 0 2), (9 11 13; 2 2 0),
(1 3 14; 0 2 2), (2 4 15; 2 1 2), (5 12 13; 2 1 2), (6 8 10; 1 0 2), (7 9 11; 2 0 1),
(1 5 15; 0 2 2), (2 12 13; 1 2 1), (3 4 8; 1 0 2), (6 7 11; 1 2 1), (9 10 14; 0 0 0),
(1 6 11; 2 0 1), (2 7 12; 1 2 1), (3 8 13; 1 0 2), (4 9 14; 0 1 1), (5 10 15; 0 1 1),
(1 6 11; 1 1 0), (2 7 12; 0 0 0), (3 8 13; 2 2 0), (4 9 14; 1 0 2), (5 10 15; 1 0 2),
(1 8 9; 2 0 1), (2 13 15; 1 0 2), (3 10 11; 1 2 1), (4 5 12; 1 2 1), (6 7 14; 2 0 1),
(1 8 15; 1 0 2), (2 3 10; 1 1 0), (4 11 12; 1 1 0), (5 7 9; 0 1 1), (6 13 14; 1 2 1),
(1 11 12; 2 0 1), (2 3 7; 2 2 0), (4 14 15; 2 1 2), (5 6 10; 1 2 1), (8 9 13; 0 1 1),
(1 12 14; 1 1 0), (2 9 10; 0 2 2), (3 5 7; 2 1 2), (4 6 8; 0 0 0), (11 13 15; 1 1 0),
(1 2 4 10 13; 2 0 2 2 1 0 0 2 2 0), (3 6 7 9 15; 2 2 2 1 0 0 2 0 2 2), (5 8 11 12 14; 1 1 0 2 0 2 1 2 1 2),
(1 3 9 12 15; 1 1 2 1 0 1 0 1 0 2), (2 5 6 8 14; 2 2 1 0 0 2 1 2 1 2), (4 7 10 11 13; 0 0 2 1 0 2 1 2 1 2),
(1 4 5 7 13; 1 1 2 1 0 1 0 1 0 2), (2 8 11 14 15; 2 0 2 2 1 0 0 2 2 0), (3 6 9 10 12; 0 1 2 0 1 2 0 1 2 1),
(1 4 7 8 10; 2 1 0 0 2 1 1 2 2 0), (2 3 5 11 14; 0 1 1 1 1 1 1 0 0 0), (6 9 12 13 15; 2 2 2 0 0 0 1 0 1 1),
(1 7 10 13 14; 0 1 0 0 1 0 0 2 2 0), (2 5 8 9 11; 0 0 2 2 0 2 2 2 2 0), (3 4 6 12 15; 2 1 2 2 2 0 0 1 1 0).

The main application of the labeled designs is to blow up the point set of a given design using the following theorem, which
extends the work of [15] such that it is applicable to labeled (uniform resolvable) pairwise balanced designs.

Theorem 2.5 ([15,14]). If there exists an L(U)GDDλ(K ,M; v) (with rLk classes of size k, for each k ∈ K), then there exists an
(U)GDD(K , λ ·M; λ · v), where λ ·M = {λ · gi|gi ∈ M} (with rk = rLk classes of size k, for each k ∈ K). If there exists a uniform
frame K-LFλ of type T , then there exists a uniform K-frame of type λ · T , where λ · T = {λ · gi|gi ∈ T }.

Proof. Let (X,G, B) be an LRGDDλ(K ,M; v) where X = {a1, a2, . . . , av}. Expanding each point ai ∈ X λ times gives
the points

{
ai,0, . . . , ai,λ−1

}
, i = 1, . . . , v, in the new design. Any group with gi points becomes a new group with λ · gi

points. Each labeled block (x1x2 . . . xk;ϕ(x1, x2) . . . ϕ(x1, xk)ϕ(x2, x3) . . . ϕ(x2, xk)ϕ(x3, x4) . . . ϕ(xk−1, xk)), k ∈ K , gives λ
new blocks

{
x1,j, x2,j+ϕ(x1,x2), . . . , xk,j+ϕ(x1,xk)

}
, k ∈ K , j = 0, . . . , (λ − 1) with indices calculated mod (λ) and all blocks

taken together consist of different points. Therefore, each (holey) uniformly parallel class of the labeled design with blocks
of size k gives a (holey) parallel class of the expanded design with blocks of the same size k. Since a frame consists of holey
parallel classes, it can be expanded, too. For each pair {x, y} ⊂ X with x < y from different groups, let B1, B2, . . . , Bλbe the
λ blocks containing {x, y} and let ϕi(x, y) be the values of ϕ(x, y) corresponding to Bi, 1 ≤ i ≤ λ. Due to the first condition
all pairs

{
xj, yj+ϕi(x,y)

}
, i = 1, . . . , λ, j = 0, . . . , (λ− 1), with indices calculated mod (λ), are different. �

A special case for URDs is shown in the following.

Corollary 2.6. If there exists an LURDλ(K ; v) with rLk classes of size k, for each k ∈ K , then there exists a URD(K ∪ {λ} ; λ · v)
with rk = rLk when k 6= λ, and rλ = r

L
λ + 1, where we take r

L
λ = 0 if λ 6∈ K.

Lemma 2.7. A URD ({3, 5} ; 45) with r5 = 2, 3, 4, 5 exists.

Proof. The designs LURD3({3, 5} ; 15) with r5 = 2, 3, 4, 5 are given in Examples 2.1–2.4. Therefore, the assertion follows
by Corollary 2.6. �
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Example 2.8. A uniform labeled frame {3, 5} -LF6 of type (1; 33)5(2; 53)1, G = {{1} , {2} , {3} , {4} , {5} , {6, 7}}; each row
forms a holey uniformly parallel class:
(4 5 6; 1 5 4), (2 3 7; 1 4 3),
(3 4 7; 1 0 5), (2 5 6; 0 1 1),
(3 5 6; 5 1 2), (2 4 7; 0 1 1),
(1 5 7; 3 2 5), (3 4 6; 2 2 0),
(3 5 6; 1 0 5), (1 4 7; 5 5 0),
(1 3 6; 4 3 5), (4 5 7; 5 2 3),
(2 5 7; 5 3 4), (1 4 6; 0 1 1),
(2 4 7; 2 0 4), (1 5 6; 5 5 0),
(1 2 6; 0 2 2), (4 5 7; 2 3 1),
(3 5 7; 2 4 2), (1 2 6; 2 0 4),
(2 3 6; 5 3 4), (1 5 7; 4 4 0),
(2 5 6; 3 0 3), (1 3 7; 2 3 1),
(2 4 6; 1 5 4), (1 3 7; 1 0 5),
(3 4 6; 0 3 3), (1 2 7; 5 1 2),
(1 4 6; 2 4 2), (2 3 7; 3 5 2),
(1 2 3 4 5; 4 0 3 0 2 5 2 3 0 3),
(1 2 3 4 5; 3 3 1 1 0 4 4 4 4 0),
(1 2 3 4 5; 1 5 4 2 4 3 1 5 3 4).

Lemma 2.9. There exists a {3, 5}-frame of type (6; 33)5(12; 53)1.

Proof. A uniform {3, 5} -LF6 of type (1; 33)5(2; 53)1 is given in Example 2.8. Therefore, the assertion follows by Theorem2.5.
�

3. Recursive constructions and first results

We now describe some constructions which we will use later. Filling groups and holes with PBDs or GDDs is known as
basic construction [6,7]. Here, groups and holes are filled with URDs to get new URDs.

Construction 3.1 (Breaking up Groups). Suppose there exists an RGDD(k1, g; i · g) and a URD ({k1, k2} ; g) with rk2 = j,
then there exists a URD ({k1, k2} ; i · g) with rk2 = j and an IURD ({k1, k2} ; i · g) with a hole of size g, rk1 =

(i−1)·g
k1−1

k1-pcs,

r◦k1 =
g−1−(k2−1)·j

k1−1
holey (or partial) k1-pcs, rk2 = 0 k2-pcs and r◦k2 = j holey k2-pcs.

Proof. Fill all groups of the RGDD with the URD to obtain the URD. Leave only one group empty to get the IURD. �

Construction 3.2 (Generalized Frame Construction). Suppose there is a k1-frame of type T = {ti : i = 1, . . . , n}, i.e. v =∑n
i=1 ti. If there exists an IURD ({k1, k2} ; ti + s)with a hole of size s, rk1 =

ti
k1−1

, r◦k1 =
s−1−(k2−1)·j2

k1−1 1
, rk2 = 0 and r

◦

k2
= j2 for i =

1, . . . , n−1, then there exists an IURD ({k1, k2} ; v + s)with a hole of size tn+s, rk1 =
∑n−1
i=1 ti
k1−1

, r◦k1 =
tn
k1−1
+
s−1−(k2−1)·j2

k1−1
, rk2 = 0

and r◦k2 = j2. If there exists a URD ({k1, k2} ; tn + s) with rk2 = j2 and therefore rk1 =
tn
k1−1
+

s−1−(k2−1)·j2
k1−1

, then a
URD ({k1, k2} ; v + s) with rk2 = j2 exists.

Proof. First, fill all holes, up to the last onewith IURDs. This gives the IURD. The hole of the framewith size ti has ti
k1−1
k1-pcs,

which can be extended with the k1-pcs from the IURD. The holey pcs from all this IURDs combine to holey pcs of the new
IURD ({k1, k2} ; v + s) with a hole of size tn + s. These are j2 holey k2-pcs and

s−1−(k2−1)·j2
k1−1 1

holey k1-pcs. tn
k1−1

holey k1-pcs
are from the hole of size tn of the frame. Filling the last hole with the URD ({k1, k2} ; tn + s) with rk2 = j2 results in the
URD ({k1, k2} ; v + s)with rk2 = j2. �

Remark. If in Construction 3.2 all IURDs derive from Construction 3.1 with r◦k2 = j2 and if the given URD has rk2 = j2, then
all additional conditions in Construction 3.2 are fulfilled. In this paper, almost all IURDs derive from Construction 3.1.

Construction 3.3 (Weighting [6]). Let (X,G, B) be a GDD, and let w : X → Z+ ∪ 0 be a weight function on X. Suppose that for
each block B ∈ B, there exists a K-frame of type {w(x) : x ∈ B}. Then there is a K-frame of type

{∑
x∈Gi

w(x) : Gi ∈ G
}
.

Construction 3.4 (Tripling [4]). If there exists a uniform K-frame of type gu11 · · · g
us
s and for each k ∈ K there exists an RTD(3, k)

(i.e. there are no blocks of size 2 or 6), then a uniform {{3} ∪ K}-frame of type (3g1)u1 · · · (3gs)us exists.
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Proof. Expand each point of the K -frame three times. Place an RTD(3, k) on each expanded block of a block of size k in such
a way that one parallel class of blocks of size 3 is the expansion of each point. Remove this parallel class to obtain the design.

�

Please note that for k 6= 3 the number of parallel classes with blocks of size k is the same in both frames. Now, a Wilson
type construction is shown, where each point of a master design is expanded and the resulting large blocks are filled with
so-called ingredient designs.

Theorem 3.5. There exists a URD ({3, 5} ; 60 · t + 15) with r5 ≤ 5 · t + 1 for t ≥ 1, t 6∈ {2, 17, 23, 32}.

Proof. By Theorem 1.2 we can take as a master design an RPBD(5; 20 · t + 5) for t ≥ 1, t 6∈ {2, 17, 23, 32}, which has
5 · t + 1 parallel classes. Expand all points of this master design three times. By Theorem 1.3 there exists an RGDD(3, 3; 15),
which is our first ingredient design. There exists a URD ({3, 5} ; 15)with r5 = 1 by Theorem 1.9. We take one parallel class
of blocks of size 3 (3-pc) as groups and get an RGDD({3, 5}, 3; 15)with r5 = 1 as the second ingredient design. All blocks of
any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way so that
several uniform parallel classes are created. Each 5-pc of the master design results in zero or one new 5-pc, therefore it is
r5 ≤ 5 · t + 1. Lastly all expanded points form a 3-pc. �

Theorem 3.6. If there exists a URD ({3, 5} ; v0)with r3 > 0, r5 = m > 0, then there exists a URD ({3, 5} ; v)with r5 = m, and
an IURD ({3, 5} ; v) with r◦5 = m and a hole of size v0, for all v ≡ v0 (mod (2 · v0)), v ≥ 3 · v0.

Proof. Since there exists a URD ({3, 5} ; v0) with r3 > 0, r5 = m > 0, it is v0 ≡ 15 (mod 30) by Theorem 1.8. Therefore,
there exists a 3-RGDD of type vn0 for n ≡ 1 (mod 2), n ≥ 3 by Theorem 1.3. Filling the groups by the above URD ({3, 5} ; v0)
with r5 = m, results in the desired URD. Without filling one group, we get the IURD. �

Corollary 3.7. There exist a URD ({3, 5} ; v)with r5 = 2, 3, 4, 5, and an IURD ({3, 5} ; v)with r◦5 = 2, 3, 4, 5 and a hole of size
45, for all v ≡ 45 (mod 90), v ≥ 135.

Proof. A URD ({3, 5} ; 45)with r5 = 2, 3, 4, 5 exists by Lemma 2.7. Therefore, the assertion follows by Theorem 3.6. �

Corollary 3.8. There exist a URD ({3, 5} ; v)with r5 = 2, 3, 4, 5, and an IURD ({3, 5} ; v)with r◦5 = 2, 3, 4, 5 and a hole of size
75, for all v ≡ 75 (mod 150), v ≥ 225.

Proof. A URD ({3, 5} ; 75)with r5 = 2, 3, 4, 5 exists by Theorem 3.5. Therefore, the assertion follows by Theorem 3.6. �

The following frame results are based on ideas, which in [4] are developed for URD({3, 4} ; v)with r4 = 3.

Lemma 3.9. There exists a {5, 6}-GDD of type 54t+1u1, 0 ≤ u ≤ 5 · t, for all t ≥ 1, t 6∈ {2, 17, 23, 32}.

Proof. There exists a 5-RGDDof type 54t+1 for t ≥ 1, t 6∈ {2, 17, 23, 32}with 5t parallel classes by Theorem1.2. Completing
u parallel classes, results in the desired design. �

Lemma 3.10. There exists a {3, 5}-frame of type (6; 33)5(12; 3451)1.

Proof. It is well known that a TD(4, 5) exists, therefore also an RTD(3, 5) and that is equivalent to a 3-RGDD of type 53.
Deleting one point results in a {3, 5}-frame of type (2; 31)5(4; 51)1. Construction 3.4 makes the desired frame. �

Lemma 3.11. There exists a {3, 5}-frame of type (30; 315)4t+1(6u + 6r; 33u+r5r)1 for 0 ≤ r ≤ u ≤ 5t, t ≥ 1, t 6∈
{2, 17, 23, 32}.

Proof. Take the {5, 6}-GDD of type 54t+1u1 from Lemma 3.9. Assign r points from the group of size uweight 12 and assign
all other points weight 6. There exist a 3-frame of type 65 and a 3-frame of type 66 by Theorem 1.4. By Lemma 3.10 there
exists a {3, 5}-frame of type (6; 33)5(12; 3451)1. Take these frames in the weighting Construction 3.3 to get the result. �

Theorem 3.12. If there exists a uniform {3, 5}-frame of type (g1; 3
g1
2 )s(g2; 3

g2−4·r
2 5r)1 and w ≡ 3 (mod 6) is such that

g1 + w ≡ 3 (mod 6), 2 · w ≤ g1, then there exists an IURD({3, 5} ; g1 · s+ g2 + w) with a hole of size g2 + w, r◦5 = r, r5 = 0
and r◦3 =

w−1
2 . If there exists a URD({3, 5} ; g2 + w) with r5 = r, and therefore r3 =

g2+w−1−4·r
2 , then there exists a

URD({3, 5} ; g1 · s+ g2 + w) with r5 = r.

Proof. First, add w infinite points on the frame. Then, fill each group G of size g1 together with the w infinite points with
the resolvable incomplete design RIPBD(3; g1+w)with a hole of sizew and r◦3 = (w− 1)/2, which exists by Theorem 1.5,
in such a way that the hole is filled with the infinite points. Each such group G has g1/2 frame-3-pcs, which can be extended
with the g1/2 parallel classes of the RIPBD(3; g1+w)with a hole of sizew. All (w− 1)/2 holy 3-pcs are left over. The result
is the IURD. The group G2 of size g2 together with the w infinite points will be filled with the URD({3, 5} ; g2 + w) with
r5 = r and r3 =

g2+w−1−4·r
2 . The (g2 − 4r)/2 frame-3-pcs and also the r frame-5-pcs can be extended with pcs from the

given URD. There remain (w− 1)/2 parallel classes of size 3 of the given URD. These join with the 3-pcs of the other groups
to (w − 1)/2 additional 3-pcs of the new URD. �
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4. Results for URDs with exactly 3 parallel classes with blocks of size 5

We use the frame in Lemma 2.9 to construct an IURD and with it the URDs.

Lemma 4.1. There exists an IURD ({3, 5} ; 30+ 15) with a hole of size 15, r3 = 15, r5 = 0, r◦3 = 1, r
◦

5 = 3.

Proof. Take the {3, 5} -frame of type (6; 33)5(12; 53)1 from Lemma 2.9. Adjoin 3 infinite points to the frame and fill all
groups of size 6 with a 3-RGDD of type 33, where the infinite points form one group. The 3 pcs of the RGDD extend the 3
holey pcs of the frame, therefore is r3 = 15. Together all groups of the above RGDDs become one holey 3-pc, i.e. r◦3 = 1. The
group of size 12 of the frame and the infinite points give the hole of size 15 and r◦5 = 3. �

Theorem 4.2. There exists aURD ({3, 5} ; v)with r5 = 3 if, and only if, v ≡ 15 (mod 30) except for v = 15, and except possibly
for v = 105.

Proof (Use of Construction 3.2). Adjoin 15 infinite points to a 3-frame of type 30n, n ≥ 4 (Theorem 1.4) and fill all groups
except one group together with the infinite points with an IURD ({3, 5} ; 45) with r◦5 = 3 and a hole of size 15, which is
given in Lemma 4.1, where the infinite points form the hole. For each group the 15 3-pcs from the frame can be extended
with the 15 3-pcs from the IURD. This gives an IURD ({3, 5} ; 30 · n+ 15) with a hole of size 45, r3 = 15 · (n − 1), r5 = 0,
r◦3 = 1, r

◦

5 = 3. Fill the last group together with the infinite points with a URD ({3, 5} ; 45)with r5 = 3 and r3 = 16, which
is given in Lemma 2.7. The 16 3-pcs from the URD complete all 15 3-pcs from the group of the frame and the only holy 3-pc
from the IURD resulting in a URD({3, 5} ; 30 ·n+15)with r5 = 3. A URD({3, 5} ; 75)with r5 = 3 is provided in Theorem 3.5.
A URD ({3, 5} ; 15)with r5 = 3 cannot exist by the second necessary condition in Theorem 1.8. �

5. Results for URDs with exactly 2, 4 or 5 parallel classes with blocks of size 5

In this section all results are given for r5 = 2, 4, 5 at the same time. All values, which are different for this values are
written down separated with commas, for instance u = 8, 6, 5 in the proof of Lemma 5.3. The results are given for the four
residue classes 15, 45, 75, 105 modulo 120, whereas 15 and 75 are given as 15 modulo 60.

Lemma 5.1. There exists a URD ({3, 5} ; v) with r5 = 2, 4, 5 for all v ≡ 15 (mod 60) except for v = 15.
Proof. By Theorem 3.5 there exists a URD ({3, 5} ; 60 · t + 15) with r5 = 2, 4, 5 for t ≥ 1, t 6∈ {2, 17, 23, 32}. For
v ∈ {135, 1035, 1395, 1935} there exists a URD ({3, 5} ; v) with r5 = 2, 4, 5 by Corollary 3.7. By the second necessary
condition in Theorem 1.8 a URD ({3, 5} ; 15)with r5 = 2, 4, 5 cannot exist. �

Lemma 5.2. There exists a URD ({3, 5} ; v) with r5 = 2, 4, 5 for all v ≡ 45 (mod 120) except possibly when v ∈ {165, 285}.
Proof. By Corollary 3.7 there exists a URD({3, 5} ; 135) with r5 = 2, 4, 5. Let w = 15, g1 = 30, s = 4t + 1, g2 = 120,
u = 18, 16, 15. Use this design, Lemma 3.11 and Theorem 3.12 to get a URD ({3, 5} ; 30 · (4t + 1)+ 135)with r5 = 2, 4, 5
for t ≥ 4, 4, 3, t 6∈ {2, 17, 23, 32}. For v ∈ {405, 2205, 2925, 4005} there exists a URD ({3, 5} ; v) with r5 = 2, 4, 5 by
Corollary 3.7. There exists a URD ({3, 5} ; 45) with r5 = 2, 4, 5 by Lemma 2.7. A URD ({3, 5} ; 525) with r5 = 2, 4, 5 exists
by Corollary 3.8. �

Lemma 5.3. There exists a URD ({3, 5} ; v) with r5 = 2, 4, 5 for all v ≡ 105 (mod 120) except possibly when v ∈
{105, 345, 2145, 2865, 3945}. Also, there exists an IURD ({3, 5} ; 465) with r◦5 = 2, 4, 5 and a hole of size 75.
Proof. Let w = 15, g1 = 30, s = 4t + 1, g2 = 60, u = 8, 6, 5. Use a URD ({3, 5} ; 75) with r5 = 2, 4, 5 (see Theorem 3.5),
Lemma3.11 and Theorem3.12 getting aURD ({3, 5} ; 30 · (4t + 1)+ 75)with r5 = 2, 4, 5 for t ≥ 3, 3, 1, t 6∈ {2, 17, 23, 32}.
A URD ({3, 5} ; 225) is given in Corollary 3.7. Without filling the hole of size g2 of the frame, we get IURDs. Particularly for
t = 3 an IURD ({3, 5} ; 465)with r◦5 = 2, 4, 5 and a hole of size g2 + w = 75 is obtained. �

Now, 3 from the undecided cases of Lemma 5.3 will be constructed with GDDs.

Lemma 5.4. There exists a URD ({3, 5} ; 2145) with r5 = 2, 4, 5.
Proof. Take a 4-GDD of type 394511, which exists by Theorem 1.1. Apply Construction 3.3 with weight 10 and 3-frames of
type 104, which exists by Theorem 1.4. The result is a 3-frame of type 3904 · 5101. Take the IURD ({3, 5} ; 390+ 75) with
r◦5 = 2, 4, 5 and a hole of size 75, which is given in Lemma 5.3. Adjoin 75 infinite points to the frame and fill all groups of
size 390 with this IURD, where the infinite points form the hole. Fill the group of size 510 together with the infinite points
with a URD ({3, 5} ; 585)with r5 = 2, 4, 5, which is also given in Lemma 5.3. This results in the required design. �

Lemma 5.5. There exists a URD ({3, 5} ; 2865) with r5 = 2, 4, 5.
Proof. Take a 4-GDD of type 604391, which exists by Theorem 1.1. Apply Construction 3.3 with weight 10 and 3-frames
of type 104, which exists by Theorem 1.4. The result is a 3-frame of type 6004 · 3901. By Corollary 3.8 there exists an
IURD ({3, 5} ; 600+ 75) with r5 = 2, 4, 5 and a hole of size 75. Adjoin 75 infinite points to the frame and fill all groups
of size 600with this IURD, where the infinite points form the hole. Fill the group of size 390 together with the infinite points
with a URD ({3, 5} ; 465)with r5 = 2, 4, 5, which is given in Lemma 5.3. This results in the required design. �
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Lemma 5.6. There exists a URD ({3, 5} ; 3945) with r5 = 2, 4, 5.

Proof. Take the 4-GDD of type 814661, which exists by Theorem 1.1. Apply Construction 3.3 with weight 10 and 3-frames
of type 104, which exists by Theorem 1.4. The result is a 3-frame of type 8104 · 6601. By Corollary 3.7 there exists an
IURD ({3, 5} ; 810+ 45)with r5 = 2, 4, 5 and a hole of size 45. Adjoin 45 infinite points to the above frame and fill all groups
of size 810 with this IURD, where the infinite points form the hole. Fill the group of size 660 together with the infinite points
with a URD ({3, 5} ; 705)with r5 = 2, 4, 5, which is given in Lemma 5.3. This results in the required design. �

All lemmas and theorems of the preceding two sections give our main theorem:

Theorem 5.7. There exists a URD ({3, 5} ; v) with r5 = 2, 3, 4, 5 if, and only if, v ≡ 15 (mod 30) except v = 15, and except
possibly

v = 105 for r5 = 3,
v ∈ {105, 165, 285, 345} for r5 = 2, 4, 5.
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