
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Discrete Mathematics 310 (2010) 2258–2270

Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Group divisible designs with block size four and group type gum1 where
g is a multiple of 8
Ernst Schuster
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany

a r t i c l e i n f o

Article history:
Received 31 August 2009
Received in revised form 8 April 2010
Accepted 29 April 2010
Available online 26 May 2010

Keywords:
Group divisible design
Labeled group divisible design
Resolvable group divisible design
Transversal design

a b s t r a c t

We determine, up to some possible exceptions, the spectrum for 4-GDDs of type gum1,
where g is amultiple of 8 until 48, g is amultiple of 24 until 144, respectively. These spectra
arewithout exceptions for g = 8, 16, 24, 48, 72, 96, 120 and 144. Furthermore,we establish,
up to a finite number of possible exceptions, the spectra for 4-GDDs of types 30um1 and
90um1. Finally, we provide nine {3, 5}-URDs which were the last possible exceptions in
their classes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A group divisible design (GDD) with index λ is a triple (X , G , B), where X is a set of points, G is a partition of X into groups,
and B is a collection of subsets of X called blocks such that any pair of distinct points from X occurs either in some group
or in exactly λ blocks, but not both. A K -GDDλ of type g

u1
1 g

u2
2 . . . g

us
s is a GDD in which every block has a size from the set K

and in which there are ui groups of size gi, i = 1, 2, . . . , s. The notation is similar to [3,6]. If λ = 1, the index λ is omitted. If
K = {k} then the K -GDDλ is simply denoted k-GDDλ.

Theorem 1.1 ([4]). Let g and u be positive integers. Then there exists a 4-GDD of type gu if, and only if, the conditions in Table 1
are satisfied.

The necessary conditions for a 4-GDD of type gum1 with g,m > 0 and u ≥ 4 are summarized in Table 2.

Theorem 1.2 ([12]). The necessary conditions of Table 2 for a 4-GDD of type gum1 are sufficient for the minimum
values of m, except that there is no 4-GDD of type 6401, but a 4-GDD of type 6431, and except possibly for the
types 111221, 111721, 112121 and 112751. The necessary conditions of Table 2 for a 4-GDD of type gum1 are sufficient for the
maximum values of m, except that there is no 4-GDD of type 2651.

Theorem 1.3 ([17,22]). There exists a 4-GDD of type g4m1 with m > 0 if, and only if, g ≡ m ≡ 0 (mod 3) and 0 < m ≤ 3g/2.

There exists a similar theorem for block size 5.

Theorem 1.4 ([1,13,22]). There exists a 5-GDD of type g5m1 with m > 0 if g ≡ m ≡ 0 (mod 4) and 0 < m ≤ 4g/3, with the
possible exceptions of (g,m) = (12, 4) and (12, 8).
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Table 1
Existence of 4-GDDs of type gu .

g u Necessary and sufficient conditions

≡ 1, 5 (mod 6) ≡ 1, 4 (mod 12) u ≥ 4
≡ 2, 4 (mod 6) ≡ 1 (mod 3) u ≥ 4, (g, u) 6= (2, 4)
≡ 3 (mod 6) ≡ 0, 1 (mod 4) u ≥ 4
≡ 0 (mod 6) No constraint u ≥ 4, (g, u) 6= (6, 4)

Table 2
Necessary existence criteria for a 4-GDD of type gum1 with u ≥ 4.

g u m mmin mmax

≡ 0 (mod 6) No conditions ≡ 0 (mod 3) 0 g(u− 1)/2
≡ 1 (mod 6) ≡ 0 (mod 12) ≡ 1 (mod 3) 1 (g(u− 1)− 3)/2

≡ 3 (mod 12) ≡ 1 (mod 6) 1 g(u− 1)/2
≡ 9 (mod 12) ≡ 4 (mod 6) 4 g(u− 1)/2

≡ 2 (mod 6) ≡ 0 (mod 3) ≡ 2 (mod 3) 2 g(u− 1)/2
≡ 3 (mod 6) ≡ 0 (mod 4) ≡ 0 (mod 3) 0 (g(u− 1)− 3)/2

≡ 1 (mod 4) ≡ 0 (mod 6) 0 g(u− 1)/2
≡ 3 (mod 4) ≡ 3 (mod 6) 3 g(u− 1)/2

≡ 4 (mod 6) ≡ 0 (mod 3) ≡ 1 (mod 3) 1 g(u− 1)/2
≡ 5 (mod 6) ≡ 0 (mod 12) ≡ 2 (mod 3) 2 (g(u− 1)− 3)/2

≡ 3 (mod 12) ≡ 5 (mod 6) 5 g(u− 1)/2
≡ 9 (mod 12) ≡ 2 (mod 6) 2 g(u− 1)/2

For some small values of g , an almost complete solution was found.

Theorem 1.5 ([23,18,14]).

1. A 4-GDD of type 1um1 exists if, and only if, u ≥ 2m + 1 and either m, u + m ≡ 1 or 4 (mod 12) or m, u + m ≡ 7 or
10 (mod 12).

2. There exists a 4-GDD of type 2um1 for each u ≥ 6, u ≡ 0 (mod 3) and m ≡ 2 (mod 3) with 2 ≤ m ≤ u − 1 except for
(u,m) = (6, 5) and possibly excepting (u,m) ∈ {(21, 17), (33, 23), (33, 29), (39, 35), (57, 44)}.

3. A 4-GDD of type 3um1 exists if, and only if, either u ≡ 0 (mod 4) and m ≡ 0 (mod 3), 0 ≤ m ≤ (3(u − 1) − 3)/2; or
u ≡ 1 (mod 4) and m ≡ 0 (mod 6), 0 ≤ m ≤ 3(u− 1)/2; or u ≡ 3 (mod 4) and m ≡ 3 (mod 6), 0 < m ≤ 3(u− 1)/2.

4. There exists a 4-GDD of type 4um1 for each u ≥ 6, u ≡ 0 (mod 3) and m ≡ 1 (mod 3) with 1 ≤ m ≤ 2(u− 1).
5. A 4-GDD of type 5um1 exists if, and only if, either u ≡ 3 (mod 12) and m ≡ 5 (mod 6), 5 ≤ m ≤ 5(u − 1)/2; or u ≡
9 (mod 12) andm ≡ 2 (mod 6), 2 ≤ m ≤ 5(u−1)/2; or u ≡ 0 (mod 12) andm ≡ 2 (mod 3), 2 ≤ m ≤ (5(u−1)−3)/2.

6. There exists a 4-GDD of type 6um1 for each u ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 3(u − 1) except for
(u,m) = (4, 0) and possibly excepting (u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33), (17, 39),
(17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}.

7. There exists a 4-GDD of type 12um1 for each u ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 6(u− 1).
8. A 4-GDD of type 15um1 exists if, and only if, either u ≡ 0 (mod 4) and m ≡ 0 (mod 3), 0 ≤ m ≤ (15(u − 1) − 3)/2; or
u ≡ 1 (mod 4) andm ≡ 0 (mod 6), 0 ≤ m ≤ 15(u−1)/2; or u ≡ 3 (mod 4) andm ≡ 3 (mod 6), 3 ≤ m ≤ 15(u−1)/2.

A transversal design TDλ(k, g), is equivalent to a k-GDDλ of type gk. That means, each block in a TDλ(k, g) contains a point
from each group. If λ = 1, the index λ is omitted.

Theorem 1.6 ([2]). A TD(k, g) exists in the following cases:

1. k = 5 and g ≥ 4 and g 6∈ {6, 10};
2. k = 6 and g ≥ 5 and g 6∈ {6, 10, 14, 18, 22};
3. k = 7 and g ≥ 7 and g 6∈ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60}.

In a K -GDDλ, a parallel class is a set of blocks, which partitions X . If B can be partitioned into parallel classes, then the K -GDDλ
is called resolvable and denoted K -RGDDλ. A parallel class is called uniform if it contains blocks of only one size k (k-pc). If
all parallel classes of a K -RGDDλ are uniform, the design is called uniformly resolvable. The following theorem about RGDDs
will be applied later.

Theorem 1.7 ([6–10,15,16,11,21,24,27,28,30,32]). The necessary conditions for the existence of a k-RGDD of type hn, namely,
n ≥ k, h · n ≡ 0 (mod k) and h · (n− 1) ≡ 0 (mod k− 1), are also sufficient for
k = 3, except for (h, n) ∈ {(2, 3), (2, 6), (6, 3)}; and for
k = 4, except for (h, n) ∈ {(2, 4), (2, 10), (3, 4), (6, 4)} and possibly excepting:
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1. h ≡ 2, 10 (mod 12):
h = 2 and n ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 178, 184, 202, 214, 238, 250, 334};
h = 10 and n ∈ {4, 34, 52, 94};
h ∈ [14, 454] ∪ {478, 502, 514, 526, 614, 626, 686} and n ∈ {10, 70, 82}.

2. h ≡ 6 (mod 12): h = 6 and n ∈ {6, 68} ; h = 18 and n ∈ {18, 38, 62}.
3. h ≡ 9 (mod 12): h = 9 and n = 44.
4. h ≡ 0 (mod 12): h = 24 and n = 23; h = 36 and n ∈ {11, 14, 15, 18, 23}.

A resolvable transversal design RTDλ(k, g), is equivalent to a k-RGDDλ of type gk.
A double group divisible design (DGDD) is a quadruple (X , G,H, B) where X is a set of points, G and H are partitions of X

(into groups and holes, respectively) and B is a collection of subsets of X (blocks) such that

1. for each block B ∈ B and each H ∈ H , |B ∩ H| ≤ 1, and
2. any pair of distinct points from X which are not in the same hole occur in some group or in exactly λ blocks, but not both.

A K -DGDD of type (g, hva1)u is a double group divisible design in which every block has a size from the set K and in which
there are u groups of size g , each of which intersects each of the first v holes in h points and the last hole in a points. Thus,
g = hv+ a. For example, a k-DGDD of type (g, hva1)k is a holey transversal design k-HTD of hole type hva1 and is equivalent
to a set of k− 2 holey MOLS of type hva1.

Theorem 1.8 ([5,20]). There exists a 4-DGDDλ(hv, hv)u if, and only if, u, v ≥ 4 and λ(u− 1)(v − 1)h ≡ 0 (mod 3) except for
(u, h, v, λ) = (4, 1, 6, 1).

Construction 1.9 ([19]). Suppose that there is a 4-DGDD (gu, gu)n, and a 4-GDD of type gum1, g > 1, u ≥ 4, where m is a
non-negative integer. Then there is a 4-GDD of type (ng)um1.

Because there also exists a 4-GDD of type 44, we obtain:

Corollary 1.10. Suppose there exists a 4-GDD of type gum1, g > 1, u ≥ 4, then there exist a 4-GDD of type (4g)um1 and a
4-GDD of type (4g)u(4m)1.

Theorem 1.11 ([34]). Suppose h and v are positive integers and a is non-negative. Then there exists a 4−HTD of hole type hva1
if, and only if, v ≥ 4 and 0 ≤ a ≤ h(v − 1)/2 except for (h, v, a) = (1, 5, 1) or (1, 6, 0).

Construction 1.12 ([22,14]). Suppose that there exists a 4 − HTD of hole type hva1. Then there exists a {3, 4}-DGDD of type
(3hv, (3h)v)4 whose blocks of size 3 can be partitioned into 9a parallel classes.

Theorem 1.13 ([33]). Let m, n be two positive integers. Then there exists a 4-GDD of type (3m)4(6m)1(3n)1 if, and only if,
m ≤ n ≤ 2mwith four possible exceptions (m, n) = (3, 5), (4, 7), (6, 7), or (6, 11).

Construction 1.14 ([1]). Suppose a TD(k+1, n) exists. Let δ = 0 or 1 , and form a block of size n+δ on each group plus δ infinite
points. Now delete a finite point, and use its blocks to define new groups. This gives a {k+ 1, n+ δ}-GDD of type kn(n− 1+ δ)1.

The concept of labeled resolvable designs is needed in order to get direct constructions for resolvable designs. This concept
was introduced by Shen [29,31,30].
Let (X, B) be a (U)GDDλ(K ,M; v) where X = {a1, a2, . . . , av} is totally ordered with ordering a1 < a2 < · · · < av . For

each block B = {x1, x2, . . . , xk} , k ∈ K , it is supposed that x1 < x2 < · · · < xk. Let Zλ be the group of residues modulo λ.

Let ϕ : B → Z

(
k
2

)
λ be a mapping where for each B = {x1, x2, . . . , xk} ∈ B, k ∈ K , ϕ(B) = (ϕ(x1, x2), . . . , ϕ(x1,

xk), ϕ(x2, x3), . . . , ϕ(x2, xk), ϕ(x3, x4), . . . , ϕ(xk−1, xk)), ϕ(xi, xj) ∈ Zλ for 1 ≤ i < j ≤ k.
A (U)GDDλ(K ,M; v) is said to be a labeled (uniform resolvable) group divisible design, denoted L(U)GDDλ(K ,M; v), if there

exists a mapping ϕ such that:

1. For each pair {x, y} ⊂ X with x < y, contained in the blocks B1, B2, . . . , Bλ, then ϕi(x, y) ≡ ϕj(x, y) if, and only if, i = j
where the subscripts i and j denote the blocks to which the pair belongs, for 1 ≤ i, j ≤ λ; and

2. For each block B = {x1, x2, . . . , xk}, k ∈ K , ϕ(xr , xs)+ ϕ(xs, xt) ≡ ϕ(xr , xt) (mod λ), for 1 ≤ r < s < t ≤ k.

Its blocks will be denoted in the following form:

(x1x2 . . . xk;ϕ(x1, x2) . . . ϕ(x1, xk)ϕ(x2, x3) . . . ϕ(x2, xk)ϕ(x3, x4) . . . ϕ(xk−1, xk)), k ∈ K .

The above definition is firstly used in [25] and is a little bit more general than the definition by Shen [30] with K = {k} or
Shen andWang [31] for transversal designs. Themain application of the labeled designs is to blow up the point set of a given
design with the following theorem [29] here extended for labeled (uniform resolvable) pairwise balanced designs.
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Theorem 1.15 ([29,25,26]). If there exists a K -L(U)GDDλ of type g
u1
1 g

u2
2 . . . g

us
s (with r

L
k classes of size k, for each k ∈ K), then

there exists a K -(U)GDD of type (λ · g1)u1(λ · g2)u2 . . . (λ · gs)us (with rk = r
L
k classes of size k, for each k ∈ K).

A uniformly resolvable design URD ({3, 5} ; v) with r3 = a and r5 = b is a {3, 5}-GDD of type 1v with all blocks of size 3 in a
3-pcs and all blocks of size 5 in b 5-pcs.

Theorem 1.16 ([26,27]). There exists a URD ({3, 5} ; v) with r5 = 2, 3, 4, 5 if, and only if, v ≡ 15 (mod 30) except v = 15,
and except possibly v ∈ {165, 285, 345} for r5 = 2, 4, 5.

This Theorem 1.16 can be improved.

Theorem 1.17. There exists a URD ({3, 5} ; v) with r5 = 2, 3, 4, 5 if, and only if, v ≡ 15 (mod 30) except v = 15.

Proof. A uniform {3, 5}-LRGDDλ of type 35 with λ ∈ {11, 19, 23} and r5 ∈ {2, 4, 5} is given in the online resource [36].
Therefore, there exists a uniform {3, 5}-RGDD of type (3λ)5 with r5 = 2, 4 or 5 by Theorem 1.15. By filling all groups with
an RPBD(3; 3λ), we obtain a URD ({3, 5} ; 15λ)with r5 = 2, 4 or 5, λ ∈ {11, 19, 23}. �

In the Section 2, direct constructions provide first results. In Section 3, all 4-GDDs of type gum1will be constructed, where
g is some multiple of 8. In further sections additional results are described. It was not possible for me to always construct
the 4-GDDs of type gum1 when g is multiple of 8. Therefore, I have limited myself to g ’s less or equal 144. These results are
important to construct all 4-GDDs of type gum1 for g ≡ 0 (mod 24) or g ≡ 0 (mod 36) in a further paper.

2. Direct constructions and first results

All directly constructed designs were found computationally. Firstly, a {3, 4}-GDDλ of type gu with all blocks of size 3
in m 3-pcs was searched by simulated annealing. If this was successful, we secondly tried to label this design by simulated
annealing or integer programming.

Lemma 2.1. There exists a {3, 4}-LGDD4 of type 26 with all blocks of size 3 in m 3-pcs for m ∈ {5, 11, 14, 17},G = {{1, 2},
{3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}.

Proof. The following designs were found computationally. A {3, 4}-LGDD4 of type 26 with all blocks of size 3 in 5 3-pcs
(each 3-pc is a row):
(1 8 10; 3 0 1), (2 6 11; 3 0 1), (3 5 12; 1 3 2), (4 7 9; 1 2 1),
(2 5 8; 1 3 2), (1 3 9; 2 3 1), (6 7 12; 2 0 2), (4 10 11; 3 3 0),
(2 4 6; 0 1 1), (5 7 10; 0 3 3), (1 9 12; 0 0 0), (3 8 11; 3 1 2),
(1 4 8; 1 2 1), (2 5 11; 3 3 0), (3 6 9; 0 0 0), (7 10 12; 0 3 3),
(1 7 11; 3 0 1), (3 5 8; 2 1 3), (4 6 9; 2 0 2), (2 10 12; 2 3 1),
(1 3 7 11; 0 0 2 0 2 2), (1 4 5 9; 2 3 1 1 3 2), (1 6 10 12; 0 3 3 3 3 0),
(1 5 8 10; 0 1 1 1 1 0), (3 6 7 10; 3 3 1 0 2 2), (1 3 6 12; 1 3 1 2 0 2),
(2 4 5 12; 1 0 0 3 3 0), (1 4 8 12; 0 0 2 0 2 2), (1 4 6 7; 3 2 1 3 2 3),
(1 5 9 11; 1 2 3 1 2 1), (2 3 9 12; 0 2 1 2 1 3), (4 5 8 12; 2 2 1 0 3 3),
(5 7 9 12; 1 0 1 3 0 1), (2 4 7 10; 3 3 0 0 1 1), (5 7 9 11; 3 3 3 0 0 0),
(6 8 9 12; 0 3 1 3 1 2), (1 6 7 11; 1 2 1 1 0 3), (2 6 8 10; 2 0 3 2 1 3),
(2 3 5 7; 2 2 0 0 2 2), (1 3 5 10; 3 2 2 3 3 0), (2 4 7 12; 2 1 2 3 0 1),
(3 6 8 11; 1 0 0 3 3 0), (2 6 8 9; 0 1 1 1 1 0), (3 8 10 12; 2 0 2 2 0 2),
(2 3 7 9; 1 2 0 1 3 2), (2 8 9 11; 2 3 1 1 3 2), (4 5 10 11; 0 2 1 2 1 3),
(4 6 10 11; 0 0 2 0 2 2), (4 8 9 11; 3 1 0 2 1 3), (2 3 10 11; 3 1 2 2 3 1).

A {3, 4}-LGDD4 of type 26 with all blocks of size 3 in 11 3-pcs (each 3-pc is a row):
(2 3 12; 3 3 0), (4 5 8; 2 3 1), (1 6 9; 3 1 2), (7 10 11; 2 1 3),
(4 5 10; 1 2 1), (2 6 8; 2 1 3), (3 9 11; 2 0 2), (1 7 12; 2 2 0),
(1 5 12; 2 1 3), (2 3 7; 0 0 0), (4 6 9; 3 0 1), (8 10 11; 2 2 0),
(4 8 12; 1 3 2), (1 3 10; 2 2 0), (2 5 9; 1 1 0), (6 7 11; 0 2 2),
(1 3 5; 0 0 0), (4 6 11; 0 1 1), (7 9 12; 1 3 2), (2 8 10; 2 2 0),
(1 6 8; 1 1 0), (5 7 10; 3 3 0), (2 4 12; 2 0 2), (3 9 11; 0 1 1),
(1 5 9; 3 2 3), (2 7 10; 3 0 1), (3 8 12; 0 1 1), (4 6 11; 1 0 3),
(1 4 7; 1 1 0), (5 8 11; 2 2 0), (2 9 12; 0 1 1), (3 6 10; 2 2 0),
(1 8 9; 3 3 0), (4 10 12; 1 1 0), (2 5 11; 3 2 3), (3 6 7; 1 3 2),
(1 8 10; 2 1 3), (2 3 11; 1 3 2), (4 5 9; 0 2 2), (6 7 12; 1 3 2),
(1 5 11; 1 1 0), (2 6 12; 1 2 1), (3 7 9; 1 1 0), (4 8 10; 2 3 1),
(2 4 5 7; 3 2 2 3 3 0), (2 3 5 8; 2 0 3 2 1 3), (2 4 7 9; 0 1 3 1 3 2),
(1 4 7 11; 2 0 0 2 2 0), (5 7 9 11; 2 1 1 3 3 0), (3 6 8 9; 0 2 3 2 3 1),
(3 5 10 12; 1 3 2 2 1 3), (3 5 8 12; 3 3 3 0 0 0), (1 3 10 11; 3 0 2 1 3 2),
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(2 6 10 11; 0 3 0 3 0 1), (5 7 10 12; 1 0 2 3 1 2), (1 4 9 12; 3 0 3 1 0 3),
(2 4 6 10; 1 3 1 2 0 2), (1 4 8 11; 0 0 3 0 3 3), (1 3 6 7; 1 0 3 3 2 3),
(1 6 10 12; 2 3 0 1 2 1), (2 8 9 11; 0 2 1 2 1 3), (6 8 9 12; 1 0 0 3 3 0).

A {3, 4}-LGDD4 of type 26 with all blocks of size 3 in 14 3-pcs (each 3-pc is a row):
(1 5 11; 1 2 1), (2 6 7; 2 0 2), (3 9 12; 2 0 2), (4 8 10; 3 0 1),
(1 3 6; 3 3 0), (4 5 8; 2 2 0), (2 10 11; 0 0 0), (7 9 12; 0 0 0),
(1 6 12; 2 1 3), (2 3 7; 1 2 1), (5 9 11; 0 3 3), (4 8 10; 0 2 2),
(1 7 11; 0 3 3), (2 3 6; 0 3 3), (4 9 12; 3 0 1), (5 8 10; 3 3 0),
(1 3 8; 1 1 0), (2 6 9; 0 2 2), (4 5 11; 0 0 0), (7 10 12; 3 2 3),
(2 4 11; 2 1 3), (1 3 8; 2 0 2), (5 7 9; 3 2 3), (6 10 12; 0 0 0),
(1 4 5; 1 2 1), (2 3 12; 2 3 1), (6 7 10; 3 1 2), (8 9 11; 2 3 1),
(2 5 9; 2 3 1), (1 4 7; 0 1 1), (3 8 12; 3 3 0), (6 10 11; 2 0 2),
(2 3 10; 3 2 3), (5 8 12; 2 1 3), (4 6 11; 2 1 3), (1 7 9; 2 3 1),
(1 10 12; 2 3 1), (4 6 7; 0 0 0), (3 5 11; 1 3 2), (2 8 9; 3 0 1),
(1 5 10; 3 3 0), (2 4 9; 3 1 2), (3 8 11; 1 2 1), (6 7 12; 1 2 1),
(3 5 9; 2 1 3), (2 10 11; 1 2 1), (4 7 12; 3 2 3), (1 6 8; 0 3 3),
(1 5 12; 0 0 0), (2 8 10; 0 3 3), (4 6 9; 1 1 0), (3 7 11; 0 1 1),
(1 4 10; 2 1 3), (6 8 11; 1 1 0), (3 9 12; 3 2 3), (2 5 7; 0 1 1),
(3 5 7 10; 0 2 2 2 2 0), (1 4 10 12; 3 0 2 1 3 2), (2 6 8 12; 1 1 2 0 1 1),
(2 4 7 11; 1 3 3 2 2 0), (2 4 5 12; 0 3 1 3 1 2), (4 6 8 9; 3 1 0 2 1 3),
(2 5 8 12; 1 2 0 1 3 2), (1 3 6 9; 0 1 0 1 0 3), (1 7 9 11; 3 1 1 2 2 0),
(3 5 7 10; 3 3 0 0 1 1), (1 8 9 11; 2 2 0 0 2 2), (3 6 10 11; 2 1 0 3 2 3).

A {3, 4}-LGDD4 of type 26 with all blocks of size 3 in 17 3-pcs (each 3-pc is a row):
(1 5 12; 1 0 3), (2 8 9; 1 1 0), (3 6 7; 0 1 1), (4 10 11; 1 1 0),
(2 3 11; 3 2 3), (1 4 6; 3 0 1), (8 10 12; 0 3 3), (5 7 9; 3 1 2),
(2 3 9; 1 3 2), (6 7 11; 0 0 0), (8 10 12; 2 2 0), (1 4 5; 1 0 3),
(3 6 9; 2 1 3), (4 5 8; 2 1 3), (1 10 11; 1 2 1), (2 7 12; 0 2 2),
(2 6 8; 0 2 2), (1 3 7; 0 0 0), (5 10 11; 2 1 3), (4 9 12; 2 3 1),
(1 8 10; 1 0 3), (2 4 12; 2 0 2), (3 5 7; 2 3 1), (6 9 11; 1 1 0),
(1 3 11; 3 0 1), (5 8 9; 0 2 2), (6 7 12; 3 2 3), (2 4 10; 1 0 3),
(1 8 9; 3 2 3), (3 10 12; 0 1 1), (2 5 11; 3 3 0), (4 6 7; 3 1 2),
(1 4 8; 0 2 2), (2 6 12; 3 3 0), (3 5 9; 0 3 3), (7 10 11; 0 2 2),
(1 5 12; 3 3 0), (3 8 10; 0 1 1), (4 7 11; 2 3 1), (2 6 9; 2 2 0),
(1 4 9; 2 3 1), (6 8 11; 0 2 2), (3 5 12; 3 0 1), (2 7 10; 3 2 3),
(1 7 9; 1 0 3), (2 4 12; 0 1 1), (3 6 10; 1 3 2), (5 8 11; 1 2 1),
(1 6 12; 3 2 3), (2 7 10; 1 3 2), (3 8 11; 3 2 3), (4 5 9; 0 0 0),
(1 6 10; 1 2 1), (3 9 12; 0 2 2), (2 5 7; 0 2 2), (4 8 11; 0 0 0),
(1 6 11; 2 1 3), (4 5 10; 1 0 3), (2 3 8; 2 3 1), (7 9 12; 1 1 0),
(2 9 11; 0 1 1), (1 3 7; 1 3 2), (4 6 8; 0 3 3), (5 10 12; 0 2 2),
(1 9 11; 1 3 2), (2 5 8; 2 0 2), (3 6 10; 3 2 3), (4 7 12; 0 0 0),
(4 7 9 11; 3 3 2 0 3 3), (1 3 8 12; 2 0 1 2 3 1), (1 5 7 10; 2 2 3 0 1 1),
(2 4 6 10; 3 1 1 2 2 0), (2 3 5 11; 0 1 0 1 0 3), (6 8 9 12; 1 2 1 1 0 3). �

Lemma 2.2. There exists a 4-GDD of type 86m1 for m ≡ 2 (mod 3), 2 ≤ m ≤ 20.
Proof. There exists a 4-GDD of type 86m1 for m ∈ {2, 20} by Theorem 1.2. There exists a 4-GDD of type 87 ≡ 8681
by Theorem1.1. There exists a {3, 4}-LGDD4 of type 26with all blocks of size 3 inm 3-pc,G = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9,
10}, {11, 12}} for m ∈ {5, 11, 14, 17} by Lemma 2.1, which results in a {3, 4}-GDD of type 86 with all blocks of size 3 in m
3-pc form ∈ {5, 11, 14, 17} by Theorem 1.15. Completing all 3-pcs, we obtain the desired designs. �

Lemma 2.3. There exists a {3, 4}-LGDD8 of type 19 with all blocks of size 3 in m1 3-pc, m1 ∈ {14, 26}. There exists a {3, 4}
-LGDD4 of type 29 with all blocks of size 3 in m2 3-pc, for m2 ∈ {11, 17, 23, 29};G = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11,
12}, {13, 14}, {15, 16}, {17, 18}}.
Proof. All these designs can be found in the online resource [36]. �

Lemma 2.4. There exists a {3, 4}-LGDD8 of type 26 with all blocks of size 3 in m 3-pcs for m ∈ {13, 19, 22, 25, 31, 34, 37},G =
{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}.
Proof. All these designs can be found in the online resource [36]. �

Lemma 2.5. There exists a {3, 4}-LGDD16 of type 19 with all blocks of size 3 in m 3-pcs for m ∈ {22, 34, 46, 58}.
Proof. All these designs can be found in the online resource [36]. �

Lemma 2.6. There exists a {3, 4}-LGDD8 of type 29with all blocks of size 3 inm 3-pcs for m ∈ {19, 25, 31, 37, 43, 49, 55, 61},G
= {{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, {13, 14}, {15, 16}, {17, 18}}.
Proof. All these designs can be found in the online resource [36]. �
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3. Above 4-GDDs of type gum1 for g = 8, 16, 24, 32, 48, 72, 96 and 144

Theorem 3.1. A 4-GDD of type 48um1 exists if, and only if, u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 24(u− 1).

Proof. There exists a TD(5, u) for u ≥ 4 and u 6∈ {6, 10} by Theorem 1.6. Remove a point and use this point to redefine the
groups. Complete all groups of size uwith a new point. This gives a {5, u+ 1}-GDD of type 4uu1 as our master design. There
exist 4-GDDs of types 125, 124a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 18, and 4-GDDs of types 12ua10, a0 ≡ 0 (mod 3), 0 ≤ a0 ≤ 6(u−1)
by Theorem 1.5. We give every point in a group of size 4 in the master design weight 12. The points in the group of size u
obtain appropriate weights. The u−1 ‘‘old’’ points obtain weights as a and the new point as a0. The result is a 4-GDD of type
48um1 for u ≥ 4, u 6∈ {6, 10} andm ≡ 0 (mod 3), 0 ≤ m ≤ 18(u− 1)+ 6(u− 1) = 24(u− 1).
By Theorem 1.6 there exists a TD(7, 8). This is a 7-GDD of type 87 = 8681 whichwe use as ourmaster design. There exists

a 4-GDD of type 66a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 15 by Theorem 1.5. In the last group of the master design the points obtain
appropriate weights. All other points weight 6. The result is a 4-GDD of type 486m1,m ≡ 0 (mod 3) and 0 ≤ m ≤ 120.
By Theorem 1.7 there exists a 4-RGDDof type 410. Completing all parallel classes, results in a 5-GDD of type 410121 which

we take as our master design. There exist 4-GDDs of types 125, 124a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 18 by Theorem 1.5. We
give every point in a group of size 4 in the master design weight 12. The points in the group of size 12 obtain appropriate
weights. The result is a 4-GDD of type 4810m1,m ≡ 0 (mod 3) and 0 ≤ m ≤ 12 · 18 = 216 = 24 · 9. �

Lemma 3.2. There exists a 4-GDD of type 72um1 for u ≥ 4, m ≡ 0 (mod 3) with 12(u− 1) ≤ m ≤ 36(u− 1).

Proof. There exists a 4-RGDD of type 12u, u ≥ 4 by Theorem 1.7. Completing the parallel classes results in a 5-GDD of type
12u(4(u− 1))1 our master design. There exists a 4-GDD of type 64a1, a ≡ 0 (mod 3), 3 ≤ a ≤ 9 by Theorem 1.5. In the last
group of the master design the points obtain appropriate weights from a. All other points weight 6. The result is a 4-GDD of
type 72um1,m ≡ 0 (mod 3) and 12(u− 1) ≤ m ≤ 36(u− 1). �

Theorem 3.3. A 4-GDD of type 72um1 exists if, and only if, u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 36(u− 1).

Proof. There exists a 4-GDD of type 724m1 form ≡ 0 (mod 3)with 0 ≤ m ≤ 108 by Theorem 1.3.
There exists a TD(7, 7) by Theorem 1.6, which gives a {7, 8}-GDD of type 6771 by Construction 1.14.We remove all points

from two groups of size 6 and get a {5, 6, 7, 8}-GDD of type 6571 as our master design. There exist 4-GDDs of types 124a1,
125a1, 126a1, 127a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 18 by Theorem 1.5, whichwe apply as ingredient designs. The points in the last
group obtain appropriate weights. All other points obtain weight 12. The result is a 4-GDD of type 725m1, m ≡ 0 (mod 3)
and 0 ≤ m ≤ 18 · 7 = 126.
Let M7 = {6, 10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60}. Then there exists a TD(7, u) for u ≥ 7 with u 6∈ M7 by

Theorem 1.6 and we obtain a {7, u+ 1}-GDD of type 6uu1 by Construction 1.14 as our master design. There exist 4-GDDs of
types 127, 126a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 30, 12ua10, a0 ≡ 0 (mod 3), 0 ≤ a0 ≤ 6(u − 1) by Theorem 1.5. We give every
point in a group of size 6 in the master design weight 12. The points in the group of size u obtain appropriate weights. The
result is a 4-GDD of type 72um1,m ≡ 0 (mod 3) and 0 ≤ m ≤ 30(u− 1)+ 6(u− 1) = 36(u− 1).
There exists a TD(7, u + 1) for u ∈ {M7 \ {14}} by Theorem 1.6 and we obtain a {7, u + 2}-GDD of type 6u+1(u + 1)1

by Construction 1.14. Deleting all points from one group of size 6 we get a {6, 7, u + 1, u + 2}-GDD of type 6u(u + 1)1 as
our master design. There exist 4-GDDs of types 125a1, 126a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 24, 12ua10, 12

u+1a10, a0 ≡ 0 (mod 3),
0 ≤ a0 ≤ 6(u − 1) by Theorem 1.5. We give every point in a group of size 6 in the master design weight 12. The
points in the group of size u + 1 obtain appropriate weights. The result is a 4-GDD of type 72um1, m ≡ 0 (mod 3) and
0 ≤ m ≤ 24u+ 6(u− 1) = 30(u− 1)+ 24.
Now the last case u = 14. There exists a TD(7, 16) by Theorem 1.6, which gives a {7, 17}-GDD of type 616161 by

Construction 1.14. We remove all points from two groups of size 6 and get a {5, 6, 7, 15, 16, 17}-GDD of type 614161 as
our master design. There exist 4-GDDs of types 124a1, 125a1, 126a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 18, 1214a10, 12

15a10, 12
16a10,

a0 ≡ 0 (mod 3), 0 ≤ a0 ≤ 6(14 − 1) by Theorem 1.5, which we apply as ingredient designs. The points in the last group
obtain appropriate weights. All other points obtain weight 12. The result is a 4-GDD of type 7214m1, m ≡ 0 (mod 3) and
0 ≤ m ≤ 18 · 15+ 78 = 26 · 13+ 10. The assertion follows with Lemma 3.2. �

Theorem 3.4. A 4-GDD of type 144um1 exists if, and only if, u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 72(u− 1).

Proof. There exists a 4-RGDD of type 12u for u ≥ 4 by Theorem 1.7. Completing all pcs results in a 5-GDD of type
12u(4(u − 1))1 which is our master design. There exists a 4-GDD of type 124a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 18. The
points in the last group obtain appropriate weights. All other points obtain weight 12. The result is a 4-GDD of type 144um1,
m ≡ 0 (mod 3) and 0 ≤ m ≤ 18 · 4(u− 1) = 72(u− 1). �

Theorem 3.5. There exists a 4-GDD of type 16um1 if, and only if, (u,m) = (3, 16) or u ≥ 6, u ≡ 0 (mod 3),m ≡ 1 (mod 3)
and 1 ≤ m ≤ 8(u− 1).
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Proof. There exists a 4-GDD of type 48ûm1 for û ≥ 4, m ≡ 0 (mod 3) and 0 ≤ m ≤ 24(û − 1) by Theorem 3.1. Adjoin 16
infinite points and fill all groups of size 48 with a 4-GDD of type 164 (Theorem 1.1), where the infinite points form a group.
This gives a 4-GDD of type 163û(m+ 16)1 for û ≥ 4,m ≡ 0 (mod 3) and 16 ≤ m+ 16 ≤ 24(û− 1)+ 16 = 8(3û− 1).
There exists a 4-GDD of type 4um1 for each u ≥ 6, u ≡ 0 (mod 3),m ≡ 1 (mod 3) and 1 ≤ m ≤ 2(u−1) by Theorem 1.5.

Therefore, there exist a 4-GDD of type 16um1 and a 4-GDD of type 16u(4m)1 for each u ≥ 6, u ≡ 0 (mod 3),m ≡ 1 (mod 3)
and 1 ≤ m ≤ 2(u− 1) by Corollary 1.10.
The designs of Lemma 2.4 in Appendix result in 4-GDDs of type 166m1,m ∈ {13, 19, 22, 25, 31, 34, 37} by Theorem 1.15

and completing all 3-pcs. The designs of Lemma 2.5 result in 4-GDDs of type 169m1,m ∈ {22, 34, 46, 58} by Theorem 1.15
and completing all 3-pcs. The designs of Lemma 2.6 result in 4-GDDs of type 169m1,m ∈ {19, 25, 31, 37, 43, 49, 55, 61} by
Theorem 1.15 and completing all 3-pcs. �

Lemma 3.6. A 4-GDD of type 246m1 exists if, and only if, m ≡ 0 (mod 3) and 0 ≤ m ≤ 12 · 5.

Proof. There exists a 4-HTD of hole type 26a1, 0 ≤ a ≤ 5 by Theorem 1.11 and therefore a {3, 4}-DGDD of type (36, 66)4
whose blocks of size 3 can be partitioned into 9a parallel classes by Construction 1.12. Adjoin 9a infinite points to complete
the 3-pcs and then adjoin a furtherm ideal points, filling in 4-GDDs of type 66m1,m ≡ 0 (mod 3), 0 ≤ m ≤ 15 coming from
Theorem 1.5 to obtain a 4-GDD of type 246(9a+m)1, 0 ≤ a ≤ 5,m ≡ 0 (mod 3), 0 ≤ m ≤ 15. �

Lemma 3.7. A 4-GDD of type 2410m1 exists if, and only if, m ≡ 0 (mod 3) with 0 ≤ m ≤ 12 · 9.

Proof. Form ≡ 0 (mod 3), 0 ≤ m ≤ 27 there exists a 4-GDD of type 610m1 by Theorem 1.5 and therefore, also a 4-GDD of
type 2410m1 by Corollary 1.10.
There exists a 5-GDD of type 411 by [35]. Filling in 4-GDDs of types 6431, 6461, 6491, which are given in Theorem 1.5, we

obtain a 4-GDD of type 2410m1 form ≡ 0 (mod 3), 12 ≤ m ≤ 36.
Completing a 4-RGDD of type 410 (Theorem 1.7) results in a 5-GDD of type 410121. Filling in 4-GDDs of types 6431, 6461,

6491, which are given in Theorem 1.5, we obtain a 4-GDD of type 2410m1 form ≡ 0 (mod 3), 36 ≤ m ≤ 12 · 9. �

Theorem 3.8. There exists a 4-GDD of type 24um1 if, and only if, u ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 12(u− 1).

Proof. A 4-GDD of type 244 ≡ 243241 exists by Theorem 1.1. For u ∈ {4, 6, 10} the results are given in Theorem 1.3,
Lemmas 3.6 and 3.7. There exists a TD(5, u) for u ≥ 5, u 6∈ {6, 10} by Theorem 1.6. Remove a point and use this point to
redefine the groups. Complete the groups of size uwith a new point. This gives a {5, u+ 1}-GDD of type 4uu1 as our master
design. There exist 4-GDDs of types 6431, 6461, 6491, and 4-GDDs of type 6ua10, a0 ≡ 0 (mod 3), 0 ≤ a0 ≤ 3(u − 1)
by Theorem 1.5 with some possible exceptions for a0. We give every point in a group of size 4 in the master design
weight 6. The points in the group of size u obtain appropriate weights. The u − 1 ‘‘old’’ points obtain 3, 6 or 9 as weight
and the new point weights as a0. The result is a 4-GDD of type 24um1 for u ≥ 4, u 6∈ {6, 10} and m ≡ 0 (mod 3),
3(u − 1) ≤ m ≤ 9(u − 1) + 3(u − 1) = 12(u − 1). The possible exceptions for a0 are not on the lower or upper limit.
Therefore, they are not needed.
There exists a 4-GDD of type 6um1 for each u ≥ 4 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 3(u − 1) except for (u,m) =

(4, 0) and possibly excepting (u,m) ∈ {(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33), (17, 39), (17, 42), (19, 45),
(19, 48), (19, 51), (23, 60), (23, 63)} by Theorem 1.5. By Corollary 1.10 there exists a 4-GDD of type 24um1 under the same
conditions.
There exists a TD(7, u), u ∈ {7, 13, 19} by Theorem 1.6. Delete one point and use this point to redefine the groups. This

gives a {7, u}-GDD of type 6u(u−1)1, our master design. There exist 4-GDDs of types 4611, 4641, 4671, 46101 by Theorem 1.5
and 4u, u ∈ {7, 13, 19} by Theorem1.1, whichwe apply as ingredient designs. The points in the last group obtain appropriate
weights. All other points obtain weight 4. The result is a 4-GDD of type 24um1 form ≡ 0 (mod 3), (u−1) ≤ m ≤ 10(u−1),
u ∈ {7, 13, 19}.
By Theorem 1.1 there exists a 4-GDD of type 2412 ≡ 2411241. There exist a 4-HTD of hole type 211a1, 0 ≤ a ≤ 10

by Theorem 1.11 and therefore a {3, 4}-DGDD of type (66, 611)4 whose blocks of size 3 can be partitioned into 9a parallel
classes by Construction 1.12. Adjoin 9a infinite points to complete the 3-pcs and then adjoin a furtherm ideal points, filling
in 4-GDDs of type 611m1, m ≡ 0 (mod 3), 0 ≤ m ≤ 30, m 6∈ {21, 24, 27} coming from Theorem 1.5 to obtain a 4-GDD of
type 2411(9 + 12)1 and a 4-GDD of type 2411(9 + 18)1. By Theorem 1.4 there exists a 5-GDD of type 32581 ≡ 32481321.
Truncating the last group appropriately, and filling the blocks with 4-GDDs of types 34 and 35, results in a 4-GDD of type
964241m1 for m ≡ 0 (mod 3), 0 ≤ m ≤ 96. There exists a 4-GDD of type 244 by Theorem 1.1. Filling all groups of size 96
with the above design results in a 4-GDD of type 2417m1 form ≡ 0 (mod 3), 0 ≤ m ≤ 96.
By Theorem 1.4 there exists a 5-GDD of type 405241 ≡ 404241401. Truncating the last group appropriately, and filling

the blocks with 4-GDDs of types 34 and 35, results in a 4-GDD of type 1204721m1 form ≡ 0 (mod 3), 0 ≤ m ≤ 120. Adjoin
24 infinite points and fill all groups of size 120 with a 4-GDD of type 246 and the group of size 72 with a 4-GDD of type 244,
where the infinite points form a group. The result is a 4-GDD of type 2423(m+ 24)1 form ≡ 0 (mod 3), 0 ≤ m ≤ 120. �

Lemma 3.9. A 4-GDD of type 89m1 exists if, and only if, m ≡ 2 (mod 3) and 2 ≤ m ≤ 32.
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Proof. There exists a 4-GDD of type 29m1 for m ∈ {2, 5, 8} by Theorem 1.5, and therefore, a 4-GDD of type 89m1
for m ∈ {2, 5, 8, 20, 32} by Corollary 1.10. The labeled designs of Lemma 2.3 result in 4-GDDs of type 89m1 for m ∈
{11, 14, 17, 23, 26, 29} by Theorem 1.15. �

Theorem 3.10. There exists a 4-GDD of type 8um1 if, and only if, (u,m) = (3, 8) or u ≥ 6, u ≡ 0 (mod 3) and m ≡ 2 (mod 3)
with 2 ≤ m ≤ 4(u− 1).

Proof. A 4-GDD of type 84 ≡ 8381 exists by Theorem 1.1. For u ∈ {6, 9} the results are contained in Lemmas 2.2 and 3.9.
There exists a 4-GDD of type 24u0m10 for each u0 ≥ 4 and m0 ≡ 0 (mod 3) with 0 ≤ m0 ≤ 12(u0 − 1) by Theorem 3.8.

Adjoin eight infinite points and fill all groups of size 24 with a 4-GDD of type 84, where the infinite points form a group.
With u = 3u0 and m = m0 + 8 we obtain a 4-GDD of type 8um1 for each u ≥ 12, u ≡ 0 (mod 3) and m ≡ 2 (mod 3) with
8 ≤ m ≤ 12(u0 − 1)+ 8 = 4(u− 1).
There exists a 4-GDD of type 8u21 for u ≥ 12, u ≡ 0 (mod 3) by Theorem 1.2. By Theorem 1.5 there exists a 4-GDD

of type 2u51 for u ≥ 12, u ≡ 0 (mod 3). Therefore, there exists a 4-GDD of type 8u51 for u ≥ 12, u ≡ 0 (mod 3) by
Corollary 1.10. �

Theorem 3.11. A 4-GDD of type 96um1 exists if, and only if, u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 48(u− 1).

Proof. There exists a TD(5, u) for u ≥ 4 and u 6∈ {6, 10} by Theorem 1.6. Remove a point and use this point to redefine the
groups. Complete all groups of size uwith a new point. This gives a {5, u+ 1}-GDD of type 4uu1 as our master design.
There exist 4-GDDs of types 245, 244a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 36, and a 4-GDD of type 24ua10 if, and only if, u ≥ 4 and

a0 ≡ 0 (mod 3)with 0 ≤ a0 ≤ 12(u− 1) by Theorem 3.8.
We give every point in a group of size 4 in themaster designweight 24. The points in the group of size u obtain appropriate

weights. The u− 1 ‘‘old’’ points obtain weights as a and the new point as a0. The result is a 4-GDD of type 96um1 for u ≥ 4,
u 6∈ {6, 10} andm ≡ 0 (mod 3), 0 ≤ m ≤ 36(u− 1)+ 12(u− 1) = 48(u− 1).
By Theorem 1.6 there exists a TD(7, 8). This is a 7-GDD of type 87 = 8681 whichwe use as ourmaster design. There exists

a 4-GDD of type 126a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 30 by Theorem 1.5. In the last group of the master design the points obtain
appropriate weights. All other points weight 12. The result is a 4-GDD of type 966m1,m ≡ 0 (mod 3) and 0 ≤ m ≤ 240.
By Theorem 1.7 there exists a 4-RGDDof type 410. Completing all parallel classes results in a 5-GDDof type 410121 which

we take as our master design. There exist 4-GDDs of types 245, 244a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 36 by Theorem 3.8. We
give every point in a group of size 4 in the master design weight 24. The points in the group of size 12 obtain appropriate
weights. The result is a 4-GDD of type 9610m1,m ≡ 0 (mod 3) and 0 ≤ m ≤ 12 · 36 = 48 · 9. �

Theorem 3.12. There exists a 4-GDD of type 32um1 if, and only if, u ≥ 4, u ≡ 0 (mod 3),m ≡ 2 (mod 3) and
2 ≤ m ≤ 16(u− 1), possibly excepting u = 9.

Proof. There exists a 4-GDD of type 96ûm1 for û ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 48(û− 1) by Theorem 3.11. Adjoin 32
infinite points and fill all groups of size 96 with a 4-GDD of type 324 (Theorem 1.1), where the infinite points form a group.
This gives a 4-GDD of type 323û(m+ 32)1 for û ≥ 4,m ≡ 0 (mod 3) and 32 ≤ m+ 32 ≤ 48(û− 1)+ 32 = 16(3û− 1).
By Theorem3.10 there exists a 4-GDD of type 8um1 for each u ≥ 6, u ≡ 0 (mod 3),m ≡ 2 (mod 3) and 2 ≤ m ≤ 4(u−1).

Therefore, there exists a 4-GDD of type 32um1 for each u ≥ 6, u ≡ 0 (mod 3), m ≡ 2 (mod 3) and 2 ≤ m ≤ 4(u − 1) by
Corollary 1.10.
By Theorem 1.6 there exists a TD(7, 8). This is a 7-GDD of type 87 = 8681 which we use as our master design. There

exist a 4-GDD of type 46a1, a ≡ 1 (mod 3), 1 ≤ a ≤ 10 by Theorem 1.5. In the last group of the master design the
points obtain appropriate weights as a. All other points weight 4. The result is a 4-GDD of type 326m1, m ≡ 2 (mod 3) and
8 ≤ m ≤ 10 · 8 = 80 = 16(6− 1). �

4. Above 4-GDDs of type 30um1

LetM6 = {6, 10, 14, 18, 22}. Then there exists a TD(6, u) for u ≥ 5 with u 6∈ M6 by Theorem 1.6.

Lemma 4.1. There exists a 4-GDD of type 30um1 for u ≥ 4, u 6∈ M6 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 15(u− 1).

Proof. A 4-GDD of type 304m1 for u ≥ 4 andm ≡ 0 (mod 3)with 0 ≤ m ≤ 45 exists by Theorem 1.3. Let be u ≥ 5, u 6∈ M6
then there exists a TD(6, u), and, therefore, there exists a {6, u + 1}-GDD of type 5uu1 by Construction 1.14, which is our
master design. There exist 4-GDDs of types 65, 65a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 12, and 4-GDDs of type 6ua10, a0 ≡ 0 (mod 3),
0 ≤ a0 ≤ 3(u − 1) by Theorem 1.5 with some possible exceptions for a0. We give every point in a group of size 5 in the
master design weight 6. The points in the group of size u obtain appropriate weights. The u− 1 ‘‘old’’ points obtain weights
as a and the new point weights as a0. The result is a 4-GDD of type 30um1 for u ≥ 5, u 6∈ M6 and m ≡ 0 (mod 3) with
0 ≤ m ≤ 12(u− 1)+ 3(u− 1) = 15(u− 1). The possible exceptions for a0 are not on the upper limit. Therefore, they can
be compensated. �
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Lemma 4.2. There exists a 4-GDD of type 30um1 for u ∈ M6 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 12(u− 1)+ 9. There exists a
4-GDD of type 30um1 for u ∈ M6 and m ≡ 0 (mod 15) with 0 ≤ m ≤ 15(u− 1).

Proof. There exists a 4-GDD of type 6um1, u ∈ M6 and m ≡ 0 (mod 3) with 0 ≤ m ≤ 3(u − 1) by Theorem 1.5 without
exceptions for u ∈ M6, which is our master design.
We give each point weight 5, apply a 4-GDD of type 54 (Theorem 1.1) and obtain a 4-GDD of type 30u(5m)1, which is the

second assertion.
There exists a 4-DGDD(6u, 6u)5 for u ∈ M6 by Theorem 1.8. Therefore with the master design, there exists a 4-GDD of

type 30um1, u ∈ M6 andm ≡ 0 (mod 3)with 0 ≤ m ≤ 3(u− 1) by Construction 1.9.
There exists a TD(6, u + 1), u ∈ M6 by Theorem 1.6, and therefore there exists a {6, u + 2}-GDD of type 5u+1(u + 1)1

by Construction 1.14. Removing a group of size 5, we obtain a {5, 6, u + 1, u + 2}-GDD of type 5u(u + 1)1. There exist
4-GDDs of types 65, 64a1, 66, 65a1, a ≡ 0 (mod 3), 3 ≤ a ≤ 9, and 4-GDDs of types 6ua10, 6

u+1a10, a0 ≡ 0 (mod 3),
0 ≤ a0 ≤ 3(u − 1) by Theorem 1.5. The points in the group of size u + 1 obtain appropriate weights. The u ‘‘old’’ points
obtain weights as a and the new point weights as a0. The result is a 4-GDD of type 30um1, u ∈ M6 andm ≡ 0 (mod 3)with
3u ≤ m ≤ 9u+ 3(u− 1) = 12(u− 1)+ 9. �

Lemma 4.3. There exists a 4-GDD of type 306m1 for m ≡ 0 (mod 3) with 0 ≤ m ≤ 75.

Proof. There exist a 4-GDD of type 306m1 for m ≡ 0 (mod 3) with 0 ≤ m ≤ 69 by Lemma 4.2 and a 4-GDD
of type 306751 by Theorem 1.2. Therefore, we need only a 4-GDD of type 306721. A {3, 4}-LGDD15 of type 26, G =
{{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {11, 12}}, with all blocks of size 3 in 72 3-pcs can be found in the online resource [36].
It results in a {3, 4}-GDD of type 306 with all blocks of size 3 in 72 3-pc by Theorem 1.15. Completing all 3-pcs we obtain the
desired design. �

Lemma 4.4. There exists a 4-GDD of type 3018m1 for m ≡ 0 (mod 3) with 0 ≤ m ≤ 15(18− 1) = 255.

Proof. There exists a 4-GDD of type 3018m1 form ≡ 0 (mod 3)with 0 ≤ m ≤ 12 (18− 1)+ 9 = 205 by Lemma 4.2.
There exist a 4-GDD of type 1804 by Theorem 1.1 (the master design) and a 4-GDD of type 306m10 for m0 ≡ 0 (mod 3),

0 ≤ m0 ≤ 75 (the ingredient design) by Lemma 4.3. Adjoinm0 infinite points to the last group of the master design and fill
all other groups of the master design with the ingredient design, where the infinite points form the group of size m0. The
result is a 4-GDD of type 3018m1,m ≡ 0 (mod 3), 180 ≤ m ≤ 255. �

Lemma 4.5. There exists a 4-GDD of type 3022m1 for m ≡ 0 (mod 3) with 0 ≤ m ≤ 14 (22− 1) = 294.

Proof. There exists a 4-RGDD of type 222 by Theorem 1.7. Completing the parallel classes results in a 5-GDD of type 222141
our master design. There exists a 4-GDD of type 154a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 21 by Theorem 1.5. In the last group of
the master design the points obtain appropriate weights. All other points weight 15. The result is a 4-GDD of type 3022m1,
m ≡ 0 (mod 3) and 0 ≤ m ≤ 14 · 21 = 294. �

All lemmas of this section give:

Theorem 4.6. There exists a 4-GDD of type 30um1 if, and only if, u ≥ 4 and m ≡ 0 (mod 3)with 0 ≤ m ≤ 15 (u− 1), possibly
excepting

u = 10, m ∈ {123, 126, 129, 132};
u = 14, m ∈ {168, 171, 174, 177, 183, 186, 189, 192};
u = 22, m ∈ {297, 303, 306, 309, 312}.

5. Above 4-GDDs of type 18um1

In this section we develop several miscellaneous results, which we apply in the last sections.

Lemma 5.1 ([17]). There exists a 4-GDD of type 18um1 for u ≡ 0 (mod 4), u = 4 or u ≥ 12, m ≡ 0 (mod 3) with
0 ≤ m ≤ 9 (u− 1), except possibly when u = 12 and 0 < m < 18.

We have the following improvement for group size 18:

Lemma 5.2. There exists a 4-GDD of type 18um1 for u ≡ 0 (mod 4), u ≥ 4, m ≡ 0 (mod 3) with 0 ≤ m ≤ 9 (u− 1), except
possibly when u = 8 and m ∈ {12, 15}.
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Proof. By reason of Lemma 5.1 we have only to look for the cases u = 8 and u = 12. There exists a 4-GDD of type 3um1 for
u ∈ {8, 12} andm ≡ 0 (mod 3), 0 ≤ m ≤ (3(u− 1)− 3)/2 by Theorem 1.5. Therefore, there exists a 4-GDD of type 18um1
for u ∈ {8, 12} andm ≡ 0 (mod 3), 0 ≤ m ≤ (3(u− 1)− 3)/2 by Theorem 1.8 and Construction 1.9.
There exists a 4-RGDD of type 3u for u ∈ {8, 12}. Completing the parallel classes results in a 5-GDD of type 3u(u − 1)1,

which we use as ourmaster design.We give all points of the last groupweights 3, 6 or 9 and all other points weight 6. Filling
in 4-GDDs of types 6431, 6461, 6491, which are given in Theorem 1.5, we obtain a 4-GDD of type 18um1 for u ∈ {8, 12} and
m ≡ 0 (mod 3), 3(u− 1) ≤ m ≤ 9(u− 1). There exists a 4-GDD of type 189 ≡ 188 181. Together we have a 4-GDD of type
188m1, m ∈ {0, 3, 6, 9, 18, 21, . . . , 63} and a 4-GDD of type 1812m1, m ≡ 0 (mod 3), 0 ≤ m ≤ 15, and 18 ≤ m ≤ 99 by
Lemma 5.1. �

Lemma 5.3. There exist a 4-GDD of type 186 211 and a 4-GDD of type 18um1 for u ≥ 5, m ≡ 0 (mod 9), 0 ≤ m ≤ 9(u − 1)
possibly excepting (u,m) ∈ {(11, 81), (13, 99), (19, 153)}.

Proof. A 4-GDD of type 186 211 is given in [33].
There exists a 4-GDD of type 6um10 for u ≥ 5 and m0 ≡ 0 (mod 3), 0 ≤ m0 ≤ 3(u − 1), possibly excepting (u,m0) ∈

{(7, 15), (11, 21), (11, 24), (11, 27), (13, 27), (13, 33), (17, 39), (17, 42), (19, 45), (19, 48), (19, 51), (23, 60), (23, 63)}
by Theorem 1.5. By Wilson’s Fundamental Construction (WFC) we obtain a 4-GDD of type 18u(3m0)1 for u ≥ 5 and
m0 ≡ 0 (mod 3), 0 ≤ 3m0 ≤ 9(u− 1), possibly excepting the above values.
There exists a TD(4, u) for u ≥ 4, u 6= 6 by Theorem 1.6. Remove a point and use this point to redefine the groups.

Complete the groups of size uwith a new point. This gives a {4, u+ 1}-GDD of type 3uu1 as our master design. There exists
a 4-GDD of type 6ua10, a0 ≡ 0 (mod 3), 0 ≤ a0 ≤ 3 (u − 1) by Theorem 1.5 with some exceptions. We give every point
in a group of size 3 in the master design the weight 6. The points in the group of size u obtain appropriate weights. The
u − 1 ‘‘old’’ points obtain 6 as weight and the new point weights as a0. The result is a 4-GDD of type 18 um1, u ≥ 4, u 6= 6,
m ≡ 0 (mod 3) and 6 (u − 1) ≤ m ≤ 6 (u − 1) + 3 (u − 1) = 9 (u − 1) but with some exceptions. The result is a 4-
GDDof type 18 um1 for (u,m) ∈ {(7, 45), (11, 63), (11, 72), (13, 81), (17, 117), (17, 126), (19, 135), (19, 144), (23, 180),
(23, 189)}. �

Lemma 5.4. There exist 4-GDD s of types 18561, 185 241, 185 301.

Proof. There exists a 4-GDD of type 3561 by Theorem 1.5. Therefore, there exists a 4-GDD of type 18561 by Theorem 1.8 and
Construction 1.9.
We give a {3, 4}-LGDD6 of type 35 with all blocks of size 3 in m ∈ {24, 30} 3-pcs (each 3-pc is a row), G =

{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}, {13, 14, 15}} in [36]. This results in a {3, 4}-GDD of type 185, with all blocks of
size 3 inm ∈ {24, 30} 3-pcs by Theorem 1.15. Completing all 3-pcs we obtain 4-GDDs of types 185241 and 185301. �

Lemma 5.5. There exists a 4-GDD of type 10um1 for each u ≥ 12, u ≡ 0 (mod 3), m ≡ 1 (mod 3) and 10 ≤ m ≤ 5(u− 1),
possibly excepting

u = 30, m ∈ {133, 136, 139, 142};
u = 42, m ∈ {178, 181, 184, 187, 193, 196, 199, 202};
u = 66, m ∈ {307, 313, 316, 319, 322}.

Proof. There exists a 4-GDD of type 30um1 for u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 24(u− 1), 0 ≤ m ≤ 15(u− 1), possibly
excepting u = 10,m ∈ {123, 126, 129, 132};
u = 14, m ∈ {168, 171, 174, 177, 183, 186, 189, 192}; u = 22,
m ∈ {297, 303, 306, 309, 312} by Theorem 4.6. Adjoin 10 infinite points and fill all groups of size 30 with a 4-GDD of type
104 (Theorem1.1),where the infinite points forma group. This gives a 4-GDDof type 103u(m+10)1 for u ≥ 4,m ≡ 0 (mod 3)
and 10 ≤ m+ 10 ≤ 15(u− 1)+ 10 = 5(3u− 1)with above exceptions. �

6. Above 4-GDDs of type 90um1

Lemma 6.1. There exists a 4-GDD of type 90u31 for u ≥ 4.

Proof. There exists a 4-GDD of type 6u31 for u ≥ 4 by Theorem 1.5 and therefore, a 4-GDD of type 90u31 for u ≥ 4 by
Theorem 1.8 and Construction 1.9. �

Lemma 6.2. There exists a 4-GDD of type 906m1 for m ≡ 0 (mod 3) with 0 ≤ m ≤ 45 (u − 1), except possibly when
m ∈ {210, 213, 219, 222}.



Author's personal copy

2268 E. Schuster / Discrete Mathematics 310 (2010) 2258–2270

Proof. The case m = 3 is shown in Lemma 6.1. There exists a TD(6, 7) by Theorem 1.6 and we obtain a {6, 8}-GDD of
type 57 71 by Construction 1.14. Deleting all points from one group of size 5 we get a {5, 6, 7, 8}-GDD of type 56 71 as
our master design. There exist 4-GDDs of types 184a1, 185a1, a ∈ {0, 6, 9, 18, 24, 27}, 186a10, 18

7a10, a0 ≡ 0 (mod 9),
0 ≤ a0 ≤ 9(6 − 1) = 45 by Lemmas 5.3 and 5.4. We give every point in a group of size 5 in the master design weight 18.
The points in the group of size 7 obtain appropriate weights. The result is a 4-GDD of type 906m1,m ≡ 0 (mod 3) and

0 ≤ m ≤

{27 · 6+ 45 = 207 = 41 · 5+ 2 form ≡ 0 (mod 9)
27 · 5+ 24+ 45 = 204 = 40 · 5+ 4 form ≡ 6 (mod 9)
27 · 4+ 24 · 2+ 45 = 201 = 40 · 5+ 1 form ≡ 3 (mod 9).

There exist 4-GDDs of types 306721, 306751 by Theorem 4.6 and therefore 4-GDDs of types 9062161, 9062251 by WFC. �

Let againM6 = {6, 10, 14, 18, 22}. Then there exists a TD(6, u) for u ≥ 5 with u 6∈ M6 by Theorem 1.6.

Lemma 6.3. There exist a 4-GDD of type 90um1 for u ≥ 5, u 6∈ M6, m ≡ 0 (mod 3) with 0 ≤ m ≤ 45 (u − 1) − 12 and
a 4-GDD of type 90um1 for u ≥ 5, u ∈ M6 \ 6, m ≡ 0 (mod 3) with 0 ≤ m ≤ 42 (u− 1).

Proof. The casem = 3 is shown in Lemma 6.1. For u ≥ 5, u 6∈ M6 there exists a TD(6, u) and therefore a {6, u+ 1}-GDD of
type 5uu1 by Construction 1.14 as our master design. There exist a 4-GDD of type 185a1, a ∈ {0, 6, 9, 18, 24, 27, 30, 36} and
a 4-GDD of type 18ua10, a0 ≡ 0 (mod 9), 0 ≤ a0 ≤ 9(u− 1)with some possible exceptions by Lemmas 5.3 and 5.4. We give
every point in a group of size 5 in the master design weight 18. The points in the group of size u obtain appropriate weights.
The u− 1 ‘‘old’’ points obtain weights as a and the new point weights as a0. The result is a 4-GDD of type 90um1 for u ≥ 5,
u 6∈ M6,m ≡ 0 (mod 3)with

0 ≤ m ≤

{36(u− 1)+ 9(u− 1) = 45(u− 1) form ≡ 0 (mod 9)
36(u− 2)+ 30+ 9(u− 1) = 45(u− 1)− 6 form ≡ 6 (mod 9)
36(u− 3)+ 30 · 2+ 9(u− 1) = 45(u− 1)− 12 form ≡ 3 (mod 9).

The possible exceptions for a0 are not on the lower or upper limit. Therefore, it is not necessary to apply these values.
For u ∈ M6 \ 6 there exists a 4-RGDD of type 6u by Theorem 1.7. Completing results in a 5-GDD of type 6u(2(u − 1))1

our master design. There exists a 4-GDD of type 154a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 21 by Theorem 1.5. In the last group of
the master design the points obtain appropriate weights. All other points weight 15. The result is a 4-GDD of type 90um1,
m ≡ 0 (mod 3) and 0 ≤ m ≤ 2(u− 1) · 21 = 42(u− 1). �

Lemma 6.4. There exists a 4-GDD of type 90um1 for u ≥ 5, u 6= 6, m ≡ 0 (mod 3)with 30(u− 1) ≤ m ≤ 45 (u− 1), possibly
excepting

u = 10, m ∈ {123, 126, 129, 132} + 30(u− 1);
u = 14, m ∈ {168, 171, 174, 177, 183, 186, 189, 192} + 30(u− 1);
u = 22, m ∈ {297, 303, 306, 309, 312} + 30(u− 1).

Proof. For u ≥ 5, u 6= 6 there exists a TD(4, u) and therefore a {4, u + 1}-GDD of type 3uu1 by Construction 1.14 as
our master design. There exist a 4-GDD of type 304, and a 4-GDD of type 30ua10, a0 ≡ 0 (mod 3), 0 ≤ a0 ≤ 15(u − 1)
by Theorem 4.6 with some possible exceptions for a0. We give every point in a group of size 3 in the master design
weight 30. The points in the group of size u obtain appropriate weights. The u − 1 ‘‘old’’ points obtain 30 as weight
and the new point weights as a0. The result is a 4-GDD of type 90um1 for u ≥ 5, u 6= 6, m ≡ 0 (mod 3) with
30(u− 1) ≤ m = 30(u− 1)+ a0 ≤ 30(u− 1)+ 15(u− 1) = 45 (u− 1), possibly excepting

u = 10, a0 ∈ {123, 126, 129, 132};
u = 14, a0 ∈ {168, 171, 174, 177, 183, 186, 189, 192};
u = 22, a0 ∈ {297, 303, 306, 309, 312}. �

Theorem 1.3 and all lemmas of this section result in:

Theorem 6.5. A 4-GDD of type 90um1 exists if, and only if, u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 45 (u− 1), possibly excepting

u = 6, m ∈ {210, 213, 219, 222};
u = 10, m ∈ {393, 396, 399, 402};
u = 14, m ∈ {558, 561, 564, 567, 573, 576, 579, 582};
u = 22, m ∈ {927, 933, 936, 939, 942}.
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7. Above 4-GDDs of types 40um1 and 120um1

Theorem 7.1. A 4-GDD of type 120um1 exists if, and only if, u ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 60 (u− 1).

Proof. There exists a TD(5, u) for u ≥ 4 and u 6∈ {6, 10} by Theorem 1.6. Remove a point and use this point to redefine the
groups. Complete all groups of size uwith a new point. This gives a {5, u+ 1}-GDD of type 4uu1 our master design.
By Theorem 4.6 there exist 4-GDDs of types 305, 304a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 45, and a 4-GDD of type 30ua10 if, and

only if, u ≥ 4 and a0 ≡ 0 (mod 3) with 0 ≤ a0 ≤ 15(u− 1) and some exceptions. We give every point in a group of size 4
in the master design weight 30. The points in the group of size u obtain appropriate weights. The u− 1 ‘‘old’’ points obtain
weights as a and the new point as a0. The result is a 4-GDD of type 120um1 for u ≥ 4, u 6∈ {6, 10} and m ≡ 0 (mod 3),
0 ≤ m ≤ 45(u− 1)+ 15(u− 1) = 60(u− 1). The possible exceptions for a0 are not on the lower or upper limit. Therefore,
it is not necessary to apply these values.
There exists a 4-HTD of hole type 106a1, 0 ≤ a ≤ 25 by Theorem 1.11 and, therefore, a {3, 4}-DGDD of type (180, 306)4

whose blocks of size 3 can be partitioned into 9a parallel classes by Construction 1.12. Adjoin 9a infinite points to complete
the 3-pcs and then adjoin a further m ideal points, filling in 4-GDDs of type 306m1, m ≡ 0 (mod 3), 0 ≤ m ≤ 75 coming
from Theorem 4.6 to obtain a 4-GDD of type 1206(9a+m)1, 0 ≤ a ≤ 25, 0 ≤ m ≤ 75.
By Theorem 1.7 there exists a 4-RGDDof type 410. Completing all parallel classes results in a 5-GDD of type 410121 which

we take as our master design. There exist 4-GDDs of types 305, 304a1, a ≡ 0 (mod 3), 0 ≤ a ≤ 45 by Theorem 4.6. We
give every point in a group of size 4 in the master design weight 30. The points in the group of size 12 obtain appropriate
weights. The result is a 4-GDD of type 12010m1,m ≡ 0 (mod 3) and 0 ≤ m ≤ 12 · 45 = 60 · 9. �

Theorem 7.2. There exists a 4-GDD of type 40um1 for each u ≥ 12, u ≡ 0 (mod 3),m ≡ 1 (mod 3) and 1 ≤ m ≤ 20(u− 1).

Proof. There exists a 4-GDD of type 120ûm1 for û ≥ 4,m ≡ 0 (mod 3) and 0 ≤ m ≤ 60(û− 1) by Theorem 7.1. Adjoin 40
infinite points and fill all groups of size 120 with a 4-GDD of type 404 (Theorem 1.1), where the infinite points form a group.
This gives a 4-GDD of type 403û(m+ 40)1 for û ≥ 4,m ≡ 0 (mod 3) and 40 ≤ m+ 40 ≤ 60(û− 1)+ 40 = 20(3û− 1).
There exists a 4-GDD of type 10um1 for each u ≥ 12, u ≡ 0 (mod 3), m ≡ 1 (mod 3) and 10 ≤ m ≤ 40 by Lemma 5.5.

Therefore, there exists a 4-GDD of type 40um1 for each u ≥ 12, u ≡ 0 (mod 3), m ≡ 1 (mod 3) and 10 ≤ m ≤ 40 by
Corollary 1.10.
There exists a 4-GDD of type 4um1 for each u ≥ 6, u ≡ 0 (mod 3), m ≡ 1 (mod 3) and 1 ≤ m ≤ 2(u − 1) by

Theorem 1.5. Therefore, there exists with n = 10 a 4-GDD of type 40um1 for each u ≥ 6, u ≡ 0 (mod 3), m ≡ 1 (mod 3)
and 1 ≤ m ≤ 2(u− 1) by Theorem 1.8 and Construction 1.9. �
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