Smal/ Uniformly Resolvable Designs for Block Sizes 3 and 4

Ernst Schuster
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Härtelstr. 16/18, 04107 Leipzig, Germany, E-mail: Ernst.Schuster@imise. uni-leipzig.de

Received May 3, 2011; revised May 31, 2013

Published online 11 July 2013 in Wiley Online Library (wileyonlinelibrary.com).
DOI 10.1002/jcd. 21361

Abstract

A uniformly resolvable design (URD) is a resolvable design in which each parallel class contains blocks of only one block size k, such a class is denoted k-pe and for a given k the number of k-pcs is denoted r_{k}. In this paper, we consider the case of block sizes 3 and 4 (both existent). We use v to denote the number of points, in this case the necessary conditions imply that $v \equiv 0(\bmod 12)$. We prove that all admissible URDs with $v<200$ points exist, with the possible exceptions of 13 values of r_{4} over all permissible v. We obtain a $\operatorname{URD}(\{3,4\} ; 276)$ with $r_{4}=9$ by direct construction use it to and complete the construction of all URD $(\{3,4\} ; v)$ with $r_{4}=9$. We prove that all admissible URDs for $v \equiv 36(\bmod 144), v \equiv 0(\bmod 60), v \equiv 36$ $(\bmod 108)$, and $v \equiv 24(\bmod 48)$ exist, with a few possible exceptions. Recently, the existence of URDs for all admissible parameter sets with $v \equiv 0(\bmod 48)$ was settled, this together with the latter result gives the existence all admissible URDs for $v \equiv 0(\bmod 24)$, with a few possible exceptions. © 2013 Wiley Periodicals, Inc. J. Combin. Designs 21: 481-523, 2013

Keywords: uniformly resolvable design; labeled uniformly resolvable design; resolvable group divisible design; frame; transversal design
AMS Classification: 05B05, 05B07

1. INTRODUCTION

Let v and λ be positive integers, let K and M be two sets of positive integers. A group divisible design, denoted by $\operatorname{GDD}_{\lambda}(K, M ; v)$, is a triple $(X, \boldsymbol{G}, \boldsymbol{B})$, where X is a set with v elements (called points), \boldsymbol{G} is a set of subsets (called groups) of X, \boldsymbol{G} partitions X, and \boldsymbol{B} is a set of subsets (called blocks) of X such that

1. $|B| \in K$ for each $B \in \boldsymbol{B}$,
2. $|G| \in M$ for each $G \in \boldsymbol{G}$,
3. $|B \cap G| \leq 1$ for each $B \in \boldsymbol{B}$ and each $G \in \boldsymbol{G}$,
4. Each pair of elements of X from distinct groups is contained in exactly λ blocks.

The notation is similar to [3,4]. If $\lambda=1$, the index λ is omitted. If $K=\{k\}$, respectively, $M=\{m\}$, then the $\operatorname{GDD}_{\lambda}(K, M ; v)$ is simply denoted by $\operatorname{GDD}_{\lambda}(k, M ; v)$, respectively, $\operatorname{GDD}_{\lambda}(K, m ; v)$, which may also be specified in "exponential" form as $K-G D D_{\lambda}$ of type

Theorem 1.1 ([17,22]). There exists a 4-GDDof type $g^{4} m^{1}$ with $m>0$ if and only if $g \equiv m \equiv 0(\bmod 3)$ and $0<m \leq 3 g / 2$.

Theorem 1.2 ($[1,14,22]$). There exists a 5-GDD of type $g^{5} m^{1}$ with $m>0$ if $g \equiv$ $m \equiv 0(\bmod 4)$ and $0<m \leq 4 g / 3$, with the possible exceptions of $(g, m)=(12,4)$ and $(12,8)$.

A transversal design $\mathrm{TD}_{\lambda}(k, g)$ is equivalent to a $\mathrm{GDD}_{\lambda}(k, g ; k g)$. That means, in a $\mathrm{TD}_{\lambda}(k, g)$, each block contains a point from each group. If $\lambda=1$, the index λ is omitted.

Theorem 1.3 ([2]). $\quad A \mathrm{TD}(k, g)$ exists in the following cases:

1. $k=6$ and $g \geq 5$ and $g \notin\{6,10,14,18,22\}$;
2. $k=7$ and $g \geq 7$ and $g \notin\{10,14,15,18,20,22,26,30,34,38,46,60\}$;
3. $A \operatorname{TD}(p+1, p)$ exists, where p is a prime power.

In a $\operatorname{GDD}_{\lambda}(K, M ; v)$ with $(X, \boldsymbol{G}, \boldsymbol{B})$, a parallel class is a set of blocks, which partitions X. If \boldsymbol{B} can be partitioned into parallel classes, then the $\operatorname{GDD}_{\lambda}(K, M ; v)$ is said to be resolvable and denoted by $\operatorname{RGDD}_{\lambda}(K, M ; v)$. Analogously, a resolvable $\operatorname{PBD}_{\lambda}(K ; v)$ is denoted by $\operatorname{RPBD}_{\lambda}(K ; v)$. A parallel class is said to be uniform if it contains blocks of only one size $k(k-\mathrm{pc})$. If all parallel classes of an $\operatorname{RPBD}_{\lambda}(K ; v)$ are uniform, the design is said to be uniformly resolvable. Here, a uniformly resolvable design $\operatorname{RPBD}_{\lambda}(K ; v)$ is denoted by $\operatorname{URD}_{\lambda}(K ; v)$. If $\lambda=1$, the index λ is omitted. In a $\operatorname{URD}_{\lambda}(K ; v)$, the number of resolution classes with blocks of size k is denoted $r_{k}, k \in K$. Uniformly resolvable designs with block sizes 3 and 4 mean here $\operatorname{URD}(\{3,4\} ; v)$ with $r_{3}>0$ and $r_{4}>0$.

The following theorem about RGDDs will be applied later.
Theorem 1.4 ([4, 9-13, 16, 18, 23, 27, 29, 31, 32]). The necessary conditions for the existence of a $k-R G D D$ of type $h^{n}, \operatorname{RGDD}(k, h ; h n)$, namely, $n \geq k, h n \equiv 0(\bmod k)$, and $h(n-1) \equiv 0(\bmod k-1)$, are also sufficient for
$k=2 ;$
$k=3$, except for $(h, n) \in\{(2,3),(2,6),(6,3)\}$; and for
$k=4$, except for $(h, n) \in\{(2,4),(2,10),(3,4),(6,4)\}$ and possibly excepting:

1. $h \equiv 2,10(\bmod 12):$
$h=2$ and $n \in\{34,46,52,70,82,94,100,118,130,178,184,202,214,238$, 250, 334\};
$h=10$ and $n \in\{4,34,52,94\}$;
$h \in[14,454] \cup\{478,502,514,526,614,626,686\}$ and $n \in\{10,70,82\}$.
2. $h \equiv 6(\bmod 12): h=6$ and $n \in\{6,68\} ; h=18$ and $n \in\{18,38,62\}$.
3. $h \equiv 9(\bmod 12): h=9$ and $n=44$.
4. $h \equiv 0(\bmod 12): h=24$ and $n=23 ; h=36$ and $n \in\{11,14,15,18,23\}$.

A resolvable transversal design $\mathrm{RTD}_{\lambda}(k, g)$ is equivalent to an $\mathrm{RGDD}_{\lambda}(k, g ; k g)$. That means, each block in an $\mathrm{RTD}_{\lambda}(k, g)$ contains a point from each group. A K-frame is a $\operatorname{GDD}(X, \boldsymbol{G}, \boldsymbol{B})$ with index unity, in which the collection of blocks \boldsymbol{B} can be partitioned into holey parallel classes each of which partitions $X \backslash G$ for some $G \in \boldsymbol{G}$. We use the
usual exponential notation for the types of GDDs and frames. Thus, a GDD or a frame of type $1^{i} 2^{j} \ldots$ is one in which there are i groups of size $1, j$ groups of size 2 , and so on. A K-frame is called uniform if each partial parallel class is of only one block size. It is called completely uniform if for each hole G the resolution classes which partition $X \backslash G$ are all of one block size. We use mostly $K=\{3,4\}$. A \{3, 4\}-frame of type $\left(g ; 3^{n_{1}} 4^{n_{2}}\right)^{u}\left(m ; 3^{n_{3}} 4^{n_{4}}\right)^{1}$ has u groups of size g. Each group of size g has n_{1} holey pcs of block size 3 and n_{2} holey pcs of block size 4 . The only group of size m has n_{3} holey pcs of block size 3 and n_{4} holey pcs of block size 4 .

Theorem 1.5 ([23]). For $k=2$ and $k=3$, there exists a k-frame of type h^{u} if and only if $u \geq k+1, h \equiv 0(\bmod k-1)$, and $h \cdot(u-1) \equiv 0(\bmod k)$.

Theorem 1.6 ($[8,13,15,16,19,23,33])$. There exists a 4 -frame of type h^{u} if and only if $u \geq 5, h \equiv 0(\bmod 3)$ and $h(u-1) \equiv 0(\bmod 4)$, except possibly where

1. $h=36$ and $u=12$;
2. $h \equiv 6(\bmod 12)$:
$h=6$ and $u \in\{7,23,27,35,39,47\}$;
$h=18$ and $u \in\{15,23,27\}$;
$h \in\{30\} \cup[66,2,190]$ and $u \in\{7,23,27,39,47\}$;
$h \in\{42,54\} \cup[2,202,11,238]$ and $u \in\{23,27\}$.
We will also use incomplete group divisible designs (IGDDs). An IGDD with block sizes from a set K and index unity is a quadruple ($X, \boldsymbol{G}, H, \boldsymbol{B}$), which meets the following conditions:
3. $\boldsymbol{G}=\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ is a partition of the set X of points into subsets called groups,
4. H is a subset of X called the hole,
5. \boldsymbol{B} is a collection of subsets of X with cardinalities from K, called blocks, so that a group and a block contain at most one common point,
6. every pair of points from distinct groups is either in H or occurs in a unique block but not both.

This design is denoted by $\operatorname{IGDD}(K, M ; v)$ of type T, where $M=$ $\left\{\left|G_{1}\right|,\left|G_{2}\right|, \ldots,\left|G_{n}\right|\right\}$ and T is the multiset $\left\{\left(\left|G_{i}\right|,\left|G_{i} \cap H\right|\right): 1 \leq i \leq n\right\}$. Sometimes "exponential" notation is used to describe the type. $\operatorname{An} \operatorname{IGDD}(K, M ; v)$ of type T is said to be uniformly resolvable and denoted by $\operatorname{IUGDD}(K, M ; v)$ of type T if blocks can be partitioned into uniform parallel classes and partial uniform parallel classes, the latter partitioning $X \backslash H$. The numbers of uniform parallel classes, partial uniform parallel classes with blocks of size k are denoted by r_{k}, r_{k}°, respectively. If $\left|G_{i}\right|=1$ for $1 \leq i \leq n$, then the IUGDD is denoted incomplete uniformly resolvable design $\operatorname{IURD}(K ; v)$ with a hole H.
Some known results about URDs are summarized below. Rees [20] introduced URDs and showed:

Theorem 1.7 ([20]). \quad There exists $a \operatorname{URD}(\{2,3\} ; v)$ with $r_{2}, r_{3}>0$ if and only if

1. $v \equiv 0(\bmod 6)$;
2. $r_{2}=v-1-2 r_{3}\left(r_{3}=\frac{v-1-r_{2}}{2}\right)$;
3. $1 \leq r_{3} \leq \frac{v}{2}-1$;
with the two exceptions $\left(v, r_{3}\right)=(6,2),(12,5)$.

Recently, almost all URDs with $K=\{2,4\}$ were constructed in [7] and slightly improved in [27] as follows:
Theorem 1.8. There exists a $\operatorname{URD}(\{2,4\} ; v)$ with $r_{2}, r_{4}>0$ if and only if

1. $v \equiv 0(\bmod 4)$;
2. $r_{2}=v-1-3 r_{4}\left(r_{4}=\frac{v-1-r_{2}}{3}\right)$;
with two exceptions $\left(v, r_{2}\right)=(8,1),(20,1)$ and possibly excepting:
$\left(v, r_{2}\right)=(2 n, 1), n \in\{52,100,184\} ;$
$\left(v, r_{2}\right)=\left(2 n, r_{2}\right), \quad n \in\{34,46,70,82,94,118,130,178,202,214,238,250,334\}, r_{2}$ admissible;
$\left(v, r_{2}\right)=(12 n, 2), n \in\{2,7,9,10,11,13,14,17,19,22,31,34,38,43,46,47,82\}$.
Theorem 1.9 ([6]). The necessary conditions for the existence of a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{3}, r_{4}>0$ are

- $v \equiv 0(\bmod 12)$;
- r_{4} is odd;
- if $r_{k}>1$, then $v \geq k^{2}$; and
- $r_{4}=\frac{v-1-2 r_{3}}{3}\left(r_{3}=\frac{v-1-3 r_{4}}{2}\right)$.

The fourth condition means that if r_{3} is given, then r_{4} is determined, and vice versa. It also implies that $r_{3} \leq(v / 2)-2$ and $r_{4} \leq(v / 3)-1$.

Remark. $\quad r_{3} \equiv 1(\bmod 3)$.
Proof. Because r_{4} is odd, insert $2 i+1$ for r_{4} in the last equation of Theorem 1.9; this gives $r_{3}=\frac{v}{2}-3 i-2 \equiv-2 \equiv 1(\bmod 3)$.

We will now summarize some known results of URDs with block sizes 3 and 4 . The next two theorems are special cases of Theorem 1.4. We take the groups as an additional parallel class to get the URDs.

Theorem 1.10 ([25]). There exist an $\operatorname{RGDD}(3,4 ; v)$ and equivalently a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4}=1$ if and only if $v \equiv 0(\bmod 12)$.

Theorem 1.11 ([21,23,29,31]). There exist an $\operatorname{RGDD}(4,3 ; v)$ and equivalently a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{3}=1$ if and only if $v \equiv 0(\bmod 12), v \geq 24$.

Theorem $1.12([5,24,27])$. There exists a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4}=3,5$, or 7 if and only if $v \equiv 0(\bmod 12)$, except when $v=12$. There exists a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4}=9$ if and only if $v \equiv 0(\bmod 12)$ except $v=12,24$ and except possibly when $v=276$.

There exist also results for small r_{3}.
Theorem 1.13 ([27]). There exists a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{3}=4$ if and only if $v \equiv$ $0(\bmod 12)$. There exists a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{3}=7$ if and only if $v \equiv 0(\bmod 12)$, except when $v=12$, and possibly excepting the following 11 values: $v \in\{72,84$, $108,132,156,204,228,276,348,372,444\}$.

There exists a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{3}=10$ if and only if $v \equiv 0(\bmod 12)$, except when $v=12$, and possibly excepting the following 12 values: $v \in\{60,72,108$, $132,156,204,228,276,300,348,372,492\}$.

The main result in [27] is as follows:
Theorem 1.14. For $v \equiv 0(\bmod 48)$, all admissible $\operatorname{URD}(\{3,4\} ; v)$ exist.
Further, the following result will be applied later.
Lemma 1.15 ([27]). \quad There exists a uniformly resolvable\{3,4\}-RGDD of type 12^{4} with $r_{4} \in\{0,2,4,6,8,12\}$ (and $r_{3} \in\{18,15,12,9,6,0\}$).

There is also a result for $K=\{3,5\}$.
Theorem 1.16 ([25-27]). There exists a $\operatorname{URD}(\{3,5\} ; v)$ with $r_{5}=2,3,4,5$ if and only if $v \equiv 15(\bmod 30)$ except $v=15$.

We use the concept of labeled resolvable designs to get direct constructions for resolvable designs. This concept was introduced by Shen [28,30,31].

Let (X, \boldsymbol{B}) be a (UR) $\operatorname{GDD}_{\lambda}(K, M ; v)$ where $X=\left\{a_{1}, a_{2}, \ldots, a_{v}\right\}$ is totally ordered with ordering $a_{1}<a_{2}<\cdots<a_{v}$. For each block $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \in K$, we suppose that $x_{1}<x_{2}<\cdots<x_{k}$. Let Z_{λ} be the group of residues modulo λ.

Let $\varphi: \boldsymbol{B} \rightarrow Z_{\lambda}^{\left({ }_{2}^{2}\right)}$ be a mapping where for each $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in \boldsymbol{B}, k \in K$,

$$
\begin{aligned}
\varphi(B)= & \left(\varphi\left(x_{1}, x_{2}\right), \ldots, \varphi\left(x_{1}, x_{k}\right), \varphi\left(x_{2}, x_{3}\right), \ldots, \varphi\left(x_{2}, x_{k}\right), \varphi\left(x_{3}, x_{4}\right), \ldots, \varphi\left(x_{k-1}, x_{k}\right)\right), \\
& \varphi\left(x_{i}, x_{j}\right) \in Z_{\lambda} \quad \text { for } \quad 1 \leq i<j \leq k .
\end{aligned}
$$

A (UR) $\mathrm{GDD}_{\lambda}(K, M ; v)$ is said to be a labeled (uniform resolvable) group divisible design, denoted by $\mathrm{L}(\mathrm{U}) \mathrm{GDD}_{\lambda}(K, M ; v)$, if there exists a mapping φ such that:

1. For each pair $\{x, y\} \subset X$ with $x<y$, contained in the blocks $B_{1}, B_{2}, \ldots, B_{\lambda}$, then $\varphi_{i}(x, y) \equiv \varphi_{j}(x, y)$ if and only if $i=j$ where the subscripts i and j denote the blocks to which the pair belongs, for $1 \leq i, j \leq \lambda$; and
2. For each block $B=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}, k \in K, \varphi\left(x_{r}, x_{s}\right)+\varphi\left(x_{s}, x_{t}\right) \equiv \varphi\left(x_{r}, x_{t}\right)(\bmod$ λ), for $1 \leq r<s<t \leq k$.
The blocks will be denoted in the following form:

$$
\begin{aligned}
& \left(x_{1} x_{2} \ldots x_{k} ; \varphi\left(x_{1}, x_{2}\right) \ldots \varphi\left(x_{1}, x_{k}\right) \varphi\left(x_{2}, x_{3}\right) \ldots \varphi\left(x_{2}, x_{k}\right) \varphi\left(x_{3}, x_{4}\right) \ldots \varphi\left(x_{k-1}, x_{k}\right)\right), \\
& k \in K .
\end{aligned}
$$

The above definition was first given in [24] and is a little bit more general than the definition by Shen [31] with $K=\{k\}$ or Shen and Wang [30] for transversal designs. A special case of type 1^{v}, a labeled $\operatorname{URD}_{\lambda}(K ; v)$, is denoted by $\operatorname{LURD}_{\lambda}(K ; v)$. A labeled K-frame of type T and index λ is denoted by $K-\mathrm{LF}_{\lambda}$ of type T.

The main application of the labeled designs is to blow up the point set of a given design with the following theorem (Shen [16]) here extended for labeled (uniform resolvable) pairwise balanced designs.

Theorem $1.17([16,24]) . \quad$ If there exists an $L(U) G D D_{\lambda}(K, M ; v)$ (with r_{k}^{L} classes of size k, for each $k \in K)$, then there exists $a(U) G D D(K, \lambda M ; \lambda v)$, where $\lambda M=\left\{\lambda g_{i} \mid g_{i} \in\right.$ $M\}$ (with $r_{k}=r_{k}^{L}$ classes of size k, for each $k \in K$). If there exists a uniform frame $K-L F_{\lambda}$ of type T, then there exists a uniform K-frame of type λT, where $\lambda T=\left\{\lambda g_{i} \mid g_{i} \in T\right\}$.

A special case for URDs is shown in the following.
Corollary 1.18. If there exists an $\operatorname{LURD} D_{\lambda}(K ; v)$ with r_{k}^{L} classes of size k, for each $k \in K$, then there exists a $\operatorname{URD}(K \cup\{\lambda\} ; \lambda v)$ with $r_{k}=r_{k}^{L}$ when $k \neq \lambda$, and $r_{\lambda}=r_{\lambda}^{L}+1$, where we take $r_{\lambda}^{L}=0$ if $\lambda \notin K$.

A K-uniform semiframe of type g^{u} and index λ is a $K-G D D_{\lambda}$ of type $g^{u}(X, \boldsymbol{G}, \boldsymbol{B})$, in which the collection of blocks \boldsymbol{B} can be written as a disjoint union $\boldsymbol{B}=\boldsymbol{P} \cup \boldsymbol{F}$, where \boldsymbol{F} is partitioned into uniform parallel classes of X and \boldsymbol{P} is partitioned into uniform partial parallel classes, where each uniform partial parallel class is a partition of X / G for some $G \in \boldsymbol{G}$. The number of partial classes per group in a frame or semiframe of size k will be indicated by a tilde, \tilde{r}_{k}. A semiframe is called perfectly uniform if there are two block sizes and P are all of one size and F are all of the other. A labeled (perfectly) uniform semiframe is a semiframe with a labeling on the blocks as above. It is worth noting that, in general, a frame or semiframe may have different numbers of classes of each size missing different groups, we exploit this fact in many of our constructions.

Analogously to Theorem 1.17, we obtain.
Theorem 1.19. If there exists a labeled (perfectly) uniform semiframe $K-L S F_{\lambda}$ of type T, then there exists a (perfectly) uniform K-semiframe of type λT, where $\lambda T=\left\{\lambda g_{i} \mid g_{i} \in\right.$ T \}.

In Section 2, some small $\{3,4\}$-URGDDs are directly constructed. All URDs with $v<200$ point are examined in Section 3. Required $\{3,4\}$-URGDDs and $\{3,4\}$-frames are contained in Section 4. The most important results of Section 5 are that there exist all admissible URDs for $v \equiv 0(\bmod 60)$ for $v>120$ and $v \equiv 36(\bmod 108)$. In Section 6 , we consider the case where $v \equiv 24(\bmod 48)$. We show that all URDs with $v \equiv 24(\bmod$ 48) exist with a few possible exceptions.

2. DIRECT CONSTRUCTIONS

The following desired designs were found computationally.
Lemma 2.1. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type 6^{4} with $r_{4} \in\{0,2,4\}$.

Proof. There exists a 3-RGDD of type 6^{4} by Theorem 1.4. Let

$$
\boldsymbol{G}=\{\{1,2,3\},\{4,5,6\},\{7,8,9\},\{10,11,12\}\} .
$$

A uniformly resolvable $\{3,4\}-\operatorname{LRGDD}_{2}$ of type 3^{4} with $r_{3}=6$ and $r_{4}=2$; each row forms a parallel class:
(67 12; 110), (2 $811 ; 000$), (159; 10 1), (34 10; 01 1),
(268; 110), (4 $910 ; 000$), ($1511 ; 011$), ($3712 ; 101$),
(1611; 000), (2 47000), ($3912 ; 011$), ($5810 ; 101$),
(4911; 110), (2512; 110), (368; 011), ($1710 ; 101$),
(5 $812 ; 011$), ($147 ; 101$), ($3610 ; 101$), ($2911 ; 011$),
(2 $412 ; 10$ 1), (6711; 011), (1810; 110), (3 $59 ; 110$),
(25710; 011110), (16912; 111000), (34811 ; 101101), (26910; 01010 1), (148 12; 000000), (357 11; 00000 0).

A uniformly resolvable $\{3,4\}-\operatorname{LRGDD}_{2}$ of type 3^{4} with $r_{3}=3$ and $r_{4}=4$; each row forms a parallel class:
(17 10; 01 1), (3 6 9; 110), (2 5 12; 110), (48 11; 000),
(5 9 10; 000), (2 $47 ; 110$), ($1611 ; 011$), ($3812 ; 101$), (29 11; 011), ($158 ; 101$), ($6712 ; 000$), ($3410 ; 110$), (14911; 100110), (26812; 100110), (357 10; 100110), (25711; 00000), (349 12; 00101 1), (168 10; 110011), (26910; 01010 1), (147 12; 01010 1), ($35811 ; 001011$), (15912; 011110), (24810; 011110), ($36711 ; 010101$).

The assertion follows by Theorem 1.17.
Lemma 2.2. There exist uniformly resolvable
$\{3,4\}-U R G D D$ of type 9^{4} with $r_{3}=12$ and $r_{4}=1$,
$\{3,4\}-U R G D D$ of type 9^{4} with $r_{3}=9$ and $r_{4}=3$,
$\{3,4\}-U R G D D$ of type 9^{4} with $r_{3}=6$ and $r_{4}=5$,
$\{3,4\}-U R G D D$ of type 9^{4} with $r_{3}=3$ and $r_{4}=7$, and
$4-R G D D$ of type 9^{4} with ($r_{3}=0$ and) $r_{4}=9$.
Proof. The 4-RGDD of type 9^{4} exists by Theorem 1.4. Let

$$
\boldsymbol{G}=\{\{1,2,3\},\{4,5,6\},\{7,8,9\},\{10,11,12\}\} .
$$

A uniformly resolvable $\{3,4\}-\operatorname{LRGDD}_{3}$ of type 3^{4} with $r_{3}=12$ and $r_{4}=1$; each row forms a parallel class:
(1410; 110), (58 12; 011), ($3711 ; 212$), (2 $69 ; 212$),
(5 9 10; 10 2), (2 8 11; 12 1), ($3612 ; 12$ 1), (14 7; 000),
(2 7 12; 10 2), ($3410 ; 102$), ($6811 ; 220$), ($159 ; 02$ 2), (6 9 12; 02 2), ($1810 ; 121$), ($2411 ; 000$), ($357 ; 110$), (3 5 11; 22 0), (2 4 8; 12 1), (1 7 12; 220), ((9 10; 110), (5 7 12; 20 1), (2 4 9; 220), ($1611 ; 110$), ($3810 ; 110$), (4710; 212), ($158 ; 201$), ($3911 ; 102$), ($2612 ; 110$), (16 11; 20 1), (2 7 10; 20 1), (4 8 12; 000), (35 9; 000), (1510; 10 2), (4 $711 ; 110$), (2 $68 ; 000$), ($3912 ; 201$), (19 11; 12 1), (3 $48 ; 02$ 2), (2 5 12; 02 2), (67 10; 220), (1 8 12; 21 2), (3 $67 ; 00$ 0), (2 5 10; 12 1), (4 9 11; 220), (3 4 12; 21 2), (58 11; 212), (2 9 10; 01 1), ($167 ; 011$), (25711; 20112 1), (36810; 20210 2), (14912; 200110).

A uniformly resolvable $\{3,4\}-\mathrm{LRGDD}_{3}$ of type 3^{4} with $r_{3}=9$ and $r_{4}=3$; each row forms a parallel class:
(6 8 11; 02 2), (2 7 10; 110), (15 12; 220), ($349 ; 220$), (259;212), (4 $811 ; 000$), ($1610 ; 000$), ($3712 ; 121$), (1411; 10 2), (5 8 10; 01 1), (39 12; 01 1), (2 $67 ; 220$), (2 $612 ; 121$), ($357 ; 02$ 2), ($1810 ; 220$), ($4911 ; 110$), (6 6 12; 02 2), ($3810 ; 212$), ($147 ; 220$), ($2511 ; 110$), (2 $811 ; 121$), (3 4 10; 10 2), (57 12; 02 2), ($169 ; 212$), (3 6 10; 12 1), (2 $911 ; 201$), (158 8; 102), (4 7 12; 220), (3 $68 ; 201$), (59 10; 121), ($2412 ; 011$), ($1711 ; 110$), (3511; 121), (6710; 121), ($248 ; 102$), ($1912 ; 000$), (167 11; 102212), (259 10; 000000), ($34812 ; 010102$), (26812; 02020 1), (357 11; 20112 1), (14910; 02121 2), (36911; 01010 2), (24710; 20210 2), (15812; 011110).

A uniformly resolvable $\{3,4\}-\mathrm{LRGDD}_{3}$ of type 3^{4} with $r_{3}=6$ and $r_{4}=5$; each row forms a parallel class:
(3 $510 ; 121$), (6711; 102), ($148 ; 011$), (29 12; 121), (3 $811 ; 220$), ($2410 ; 121$), ($169 ; 022$), (57 12; 02 2), (2 $611 ; 102$), ($5812 ; 102$), ($1710 ; 121$), ($349 ; 121$), (357; 011), ($1412 ; 201$), ($6810 ; 110$), ($2911 ; 011$), (2 $58 ; 110),(1710 ; 000),(4911 ; 212),(3612 ; 102)$, (1511;201), (3812;011), (267; 212), (4 $910 ; 000$), (36910; 010102), ($15711 ; 022220$), (24812; 000000), (26712; 00101 1), (35910; 20112 1), (148 11; 10120 1), (15912; 102212), ($24710 ; 22102$ 2), ($36811 ; 210212$), (25810; 02020 1), ($34711 ; 20112$ 1), (16912; 111000), (25911; 222000), (168 10; 22102 2), (34712; 022220).

A uniformly resolvable $\{3,4\}-\mathrm{LRGDD}_{3}$ of type 3^{4} with $r_{3}=3$ and $r_{4}=7$; each row forms a parallel class:
(6711; 20 1), (2 4 10; 10 2), (35 8; 011), (19 12; 110), (2 $811 ; 212$), ($3612 ; 02$ 2), ($147 ; 02$ 2), ($5910 ; 110$), (3710; 220), (1511; 000), (269; 212), (4 $812 ; 110$), (16812; 10221 2), (24911; 22001 1), (35710; 20112 1), (16910; 22001 1), (25812; 21220 1), ($34711 ; 11002$ 2), (35912; 11002 2), (148 11; 22200 0), (26710; 12110 2), (25911; 102212), ($34810 ; 02020$ 1), (167 12; 000000), (26810; 00202 2), (157 11; 21122 0), (3 49 12; 20112 1),
(15810; 11100 0), (24712; 01010 2), (36911 ; 122110),
(14910; 10221 2), (25712; 00101 1), (36811; 201121).
The assertions follow by Theorem 1.17.
Lemma 2.3. There exist all admissible uniformly resolvable $\{3,4\}-U R G D D$ of type $12^{4}, r_{4} \in\{0,2,4,6,8,10,12\}$.

Proof. Let $\boldsymbol{G}=\{\{1,2,3\},\{4,5,6\},\{7,8,9\},\{10,11,12\}\}$.
A uniformly resolvable $\{3,4\}-\mathrm{LRGDD}_{4}$ of type 3^{4} with $r_{3}=3$ and $r_{4}=10$; each row forms a parallel class:
(5 9 11; 220), (2 $612 ; 033$), ($1710 ; 110$), ($348 ; 220$),
(2 $811 ; 213$), (4 7 12; 01 1), (3 $510 ; 312$), ($169 ; 220$),
(1411; 12 1), (3 9 12; 110), (257; 12 1), (6 8 10; 01 1),
(24912; 23012 1), (15710; 102312), ($36811 ; 100330$),
(16912; 03131 2), (25811; 31320 2), (347 10; 31021 3),
(16710; 12312 1), (349 11; 02323 1), (2 58 12; 23210 3),
(14812; 21230 1), (359 10; 00303 3), (267 11; 102312),
(15812; 033330), ($36711 ; 022220$), (24910; 11302 2),
(25810; 00000 0), (347 12; 10033 0), (169 11; 30310 3),
(36812; 31320), (24910; 322330), ($15711 ; 330011$),
(36810; 23210 3), (24711; 01010 3), (15912; 21032 3),
(35712; 132213), ($14811 ; 301121$), (26910; 201231),
(35911; 231132), (148 10; 02020 2), (267 12; 33102 2).
Therefore, there exists a $\{3,4\}-U R G D D$ of type 12^{4} with $r_{3}=3$ and $r_{4}=10$ by Theorem 1.17. The assertions follow by Lemma 1.15

Lemma 2.4. There exists a uniformly resolvable $\{3,4\}$-URGDD of type 3^{4} with $r_{3}=3$ and $r_{4}=1$.

Proof. There exists a 3-RGDD of type 4^{3} with $r_{3}=4$ by Theorem 1.4. This is equivalent to the desired design.

Lemma 2.5. There exist all admissible uniformly resolvable $\{3,4\}-U R G D D$ of type $15^{4}, r_{4} \in\{1,3,5,7,9,11,13,15\}$.

Proof. There exists a $\{3,4\}$-URGDD of type 3^{4} with $r_{4}^{0}=1$ by Lemma 2.4. We expand all points of this design five times. The result is a $\{3,4\}$-URGDD of type 15^{4} with $r_{4}=5$. There exists a 4-RGDD of type 15^{4} with $r_{4}=15$ by Theorem 1.4. There exists a $\{3,4\}-\mathrm{LRGDD}_{5}$ of type 3^{4} with $r_{4} \in\{1,3,7,9,11,13\}$ in the online resource [34]. The assertions follow by Theorem 1.17.

Lemma 2.6. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type $18^{4}, r_{4} \in$ $\{0,2, \ldots, 18\}$.

Proof. There exists 4-RGDD of type 18^{4} by Theorem 1.4. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type 6^{4} with $r_{4} \in\{0,2,4\}$ by Lemma 2.1. We expand each point three times, use a $\{3,4\}-U R G D D$ of type 3^{4} with $r_{3}=3, r_{4}=1$ (Lemma 2.4) as ingredient design, and obtain a $\{3,4\}-U R G D D$ of type 18^{4} with $r_{4} \in\{0,2,4\}$. There exists a $\{3,4\}-\mathrm{LRGDD}_{6}$ of type 3^{4} with $r_{4} \in\{6,8,10,12,14,16\}$ in the online resource [34]. The assertions follow by Theorem 1.17.

Lemma 2.7. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type $21^{4}, r_{4} \in$ $\{1,3, \ldots, 21\}$.

Proof. There exists a $\{3,4\}$-URGDD of type 3^{4} with $r_{4}^{0}=1$ by Lemma 2.4. We expand all points of this design seven times. The result is a $\{3,4\}-U R G D D$ of type 21^{4} with $r_{4}=7$. There exists a 4-RGDD of type 21^{4} with $r_{4}=21$ by Theorem 1.4.

There exists a $\{3,4\}-\operatorname{LRGDD}_{7}$ of type 3^{4} with $r_{4} \in\{1,3,5,9,11,13,15,17,19\}$ in the online resource [34]. The assertions follow by Theorem 1.17.

Lemma 2.8. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type $27^{4}, r_{4} \in$ $\{1,3,5,7,9,27\}$.

Proof. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type 9^{4} with $r_{4} \in$ $\{1,3,5,7,9\}$ by Lemma 2.2. We expand each point three times, use a $\{3,4\}-U R G D D$ of type 3^{4} with $r_{3}=3, r_{4}=1$ (Lemma 2.4) as ingredient design, and obtain a $\{3,4\}-U R G D D$ of type 27^{4} with $r_{4} \in\{1,3,5,7,9\}$. There exists a 4-RGDD of type 27^{4} by Theorem 1.4.

Lemma 2.9. There exists a uniformly resolvable $\{3,4\}-U R G D D$ of type $6^{6}, r_{4} \in$ $\{0,2,4,6,8\}$.

Proof. There exists a 3-RGDD of type 6^{6} by Theorem 1.4. All other designs are constructed directly in [34].

Lemma 2.10. There exists a $\{3,4\}-U R G D D$ of type $60^{4}, r_{4} \in\{0,2, \ldots, 60\}$.
Proof. There exists a 4-RGDD of type 5^{4} by Theorem 1.4, which is our master design. We take all designs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times and obtain a \{3, 4\}-URGDD of type 60^{4} with $r_{4} \in\{0,2, \ldots, 60\}$.

Lemma 2.11. \quad There exists a uniformly resolvable $\operatorname{URD}(\{3,4\} ; 276)$ with $r_{4}=9$.
Proof. There exists a perfectly uniform semiframe $\{3,4\}$-LRGDD 69 of type 1^{4} with $\tilde{r}_{3}=30$ per group and $r_{4}=9$ in the online resource [34]. This results in a perfectly uniform semiframe $\{3,4\}$-SF of type 69^{4} with $\tilde{r}_{3}=30$ per group and $r_{4}=9$ by Theorem 1.19. We fill the groups with a 3-RGDD of type 1^{69} with $r_{3}=34$ (Theorem 1.4). Therefore, we obtain a $\operatorname{URD}(\{3,4\} ; 276)$ with $r_{4}=9$.

Theorem 2.12. There exists a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4}=9$ if and only if $v \equiv 0(\bmod 12)$ except $v=12,24$.

Proof. A URD $\left(\{3,4\}\right.$; 276) with $r_{4}=9$ is obtained in Lemma 2.11. The assertion follows by Theorem 1.12.

3. ADMISSIBLE URDs FOR SMALL v

Lemma 3.1. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 24), r_{4} \in\{1,3,5,7\}$.
Proof. The assertion follows by Theorem 1.12.
Lemma 3.2. There exist all admissible $\operatorname{URD}(\{3,4\} ; 36), r_{4} \in\{1,3,5,7,9,11\}$.
Proof. There exists a 4-RGDD of type 3^{12} with $r_{4}=11$ by Theorem 1.4. The assertion follows by Theorem 1.12.

Lemma 3.3. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v), v \in\{48,96,144,192\}$.
Proof. The assertion follows by Theorem 1.14.
Lemma 3.4. There exist all admissible $\operatorname{URD}(\{3,4\} ; 60), r_{4} \in\{1,3,5, \ldots, 19\}$.
Proof. There exists a uniformly resolvable $\{3,4\}$-URGDD of type 15^{4} with $r_{4} \in\{11$, 13\} by Lemma 2.5. Filling the groups with a 3-RGDD of type 1^{15} results in a URD $(\{3,4\} ; 60)$ with $r_{4} \in\{11,13\}$. The assertion follows by Theorems 1.12 and 1.13.

Lemma 3.5. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 72), r_{4} \in\{1,3,5, \ldots, 23\}$.
Proof. There exists a $\{3,4\}$ - LRGDD_{3} of type 1^{24} with $r_{4} \in\{11,13,15\}$ in the online resource [34]. Therefore, there exists a $\operatorname{URD}(\{3,4\} ; 72)$ with $r_{4} \in\{11,13,15\}$ by Theorem 1.17. There exists a $\{3,4\}-\mathrm{LRGDD}_{6}$ of type 2^{6} with $r_{4} \in\{16,18\}$ in the online resource [34]. Therefore, there exists a $\{3,4\}$-URGDD of type 12^{6} with $r_{4} \in\{16,18\}$ by Theorem 1.17. Filling the groups with a $\{3,4\}$-URGDD of type 1^{12} with $r_{3}=4, r_{4}=1$ (Lemma 2.4) results in a $\operatorname{URD}(\{3,4\} ; 72)$ with $r_{4} \in\{17,19\}$. The assertion follows by Theorems 1.12 and 1.13.

Lemma 3.6. There exist all admissible $\operatorname{URD}(\{3,4\} ; 84), r_{4} \in\{1,3,5, \ldots, 21,25$, $27\}$, possibly excepting $r_{4}=23$.

Proof. There exists a labeled perfectly uniform semiframe $\{3,4\}$-LRGDD 21 of type 1^{4} with $\tilde{r}_{3} \in\{5,4,3,2,1\}$ per group and $r_{4} \in\{11,13,15,17,19\}$, respectively, in the online resource [34]. This results in a semiframe $\{3,4\}$-SF of type 21^{4} with $\tilde{r}_{3} \in\{5,4,3,2,1\}$ per group and $r_{4} \in\{11,13,15,17,19\}$, respectively, by Theorem 1.19. We fill the groups with a 3-RGDD of type 1^{21} with $r_{3}=10$ (Theorem 1.4). This expands all partial 3-pc and induces additional 3-pc. Therefore, we obtain a $\operatorname{URD}(\{3,4\} ; 84)$ with $r_{4} \in\{11,13,15,17,19\}$.There exists a 4-RGDD of type 21^{4} with $r_{4}=21$ by Theorem 1.4. Filling the groups with a 3-RGDD of type 1^{21} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 84)$ with $r_{4}=21$. The assertion follows by Theorems 1.12 and 1.13.

Lemma 3.7. There exist all admissible $\operatorname{URD}(\{3,4\} ; 108), r_{4} \in\{1,3,5, \ldots, 27,33$, $35\}$, possibly excepting $r_{4} \in\{29,31\}$.

Proof. There exists a labeled perfectly uniform semiframe $\{3,4\}-$ LRGDD $_{27}$ of type 1^{4} with $\tilde{r}_{3} \in\{8,7,6,5,4,3,2,1\}$ per group and $r_{4} \in\{11,13,15,17,19,21,23,25\}$, respectively, in the online resource [34]. This results in a semiframe \{3, 4\}-SF of type 27^{4} with $\tilde{r}_{3} \in\{8,7,6,5,4,3,2,1\}$ per group and $r_{4} \in\{11,13,15,17,19,21,23,25\}$, respectively, by Theorem 1.19. We fill the groups with a 3-RGDD of type 1^{27} with $r_{3}=13$ (Theorem 1.4). This expands all partial 3-pc and induces additional 3-pc. Therefore, we obtain a $\operatorname{URD}(\{3,4\} ; 108)$ with $r_{4} \in\{11,13,15,17,19,21,23,25\}$. There exists a 4-RGDD of type 27^{4} with $r_{4}=27$ by Theorem 1.4. Filling the groups with a 3-RGDD of type 1^{27} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 108)$ with $r_{4}=27$. The assertion follows by Theorems 1.12 and 1.13.

Lemma 3.8. There exists a $\{3,4\}$-URGDD of type 24^{5} for $r_{4} \in\{0,2,4, \ldots, 16,32\}$.
Proof. There exists a 4-RGDD of type 5^{4} by Theorem 1.4. This is also a $\{4,5\}$ URGDD of type $4^{5} r_{4}=4, r_{5}=1$, which we take as the master design. There exist a 3-RGDD of types 6^{4} and 6^{5} by Theorem 1.4 and a \{3,4\}-URGDD of type 6^{4} with $r_{4} \in\{0,2,4\}$ by Lemma 2.1, which are our ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 0, 2, or 44 -pcs. We obtain a $\{3,4\}$-URGDD of type 24^{5} with $r_{4} \in\{0,2,4, \ldots, 16\}$, as we fill all parallel classes appropriately. There exists a 4-RGDD of type 24^{5} with $r_{4}=32$ by Theorem 1.4.

Lemma 3.9. There exist all admissible $\operatorname{URD}(\{3,4\} ; 120)$, possibly excepting $r_{4} \in$ $\{27,29,31\}$.

Proof. We fill each group in Lemma 3.8 with the same appropriate $\operatorname{URD}(\{3,4\} ; 24)$ and obtain a $\operatorname{URD}(\{3,4\} ; 120)$ with $r_{4} \in\{1,3,5, \ldots, 23,33,35,37,39\}$.

There exists a $\{3,4\}$-URGDD of type $3^{8}, r_{4}^{0}=5$ by Lemma 3.1, which we take as the master design. There exist a 3-RGDD of type 5^{3} and a 4 -RGDD of type 5^{4} by Theorem 1.4, which are our ingredient designs. We expand all points of the master design five times. We obtain a $\{3,4\}$-URGDD of type 15^{8} with $r_{4}=25$, filling the groups with a 3 -RGDD of type 1^{15} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 120)$ with $r_{4}=25$.

Lemma 3.10. There exist all admissible $\operatorname{URD}(\{3,4\} ; 132)$, possibly excepting $r_{4} \in$ $\{35,37,39\}$.

Proof. There exists a \{3, 4\}-URGDD of type 3^{4} with $r_{3}^{0}=3, r_{4}^{0}=1$ by Lemma 2.4, which we take as the master design. There exist a 3-RGDD of type 11^{3} and a 4-RGDD of type 11^{4} by Theorem 1.4, which are our ingredient designs. We expand all points of the master design 11 times. The 4-pc of the master design results in 114 -pcs. We obtain a $\{3,4\}$-URGDD of type 33^{4} with $r_{4}=11$, filling the groups with a 3-RGDD of type 1^{33} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 132)$ with $r_{4}=11$.
There exists a labeled perfectly uniform semiframe $\{3,4\}-\mathrm{LRGDD}_{33}$ of type 1^{4} with $\tilde{r}_{3} \in\{10,9,8,7,6,5,4,3,2,1\}$ per group and $r_{4} \in\{13,15,17,19,21,23$,
$25,27,29,31\}$, respectively, in the online resource [34]. This results in a perfectly uniform semiframe $\{3,4\}$-SF of type 33^{4} with $\tilde{r}_{3} \in\{10,9,8,7,6,5,4,3,2,1\}$ per group and $r_{4} \in\{13,15,17,19,21,23,25,27,29,31\}$, respectively, by Theorem 1.19. We fill the groups with a 3-RGDD of type 1^{33} with $r_{3}=16$ (Theorem 1.4). This expands all partial 3-pc and induces additional 3-pc. Therefore, we obtain a $\operatorname{URD}(\{3,4\} ; 132)$ with $r_{4} \in\{13,15,17,19,21,23,25,27,29,31\}$.

There exists a 4 -RGDD of type 33^{4} with $r_{4}=33$ by Theorem 1.4. Filling the groups with a 3-RGDD of type 1^{33} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 132)$ with $r_{4}=33$. The assertion follows by Theorems 1.12 and 1.13.

Lemma 3.11. There exist all admissible $\operatorname{URD}(\{3,4\} ; 156)$, possibly excepting $r_{4} \in$ $\{41,43,45,47\}$.

Proof. There exists a \{3, 4\}-URGDD of type 3^{4} with $r_{3}^{0}=3, r_{4}^{0}=1$ by Lemma 2.4, which we take as the master design. There exist a 3-RGDD of types 13^{3} and a 4-RGDD of type 13^{4} by Theorem 1.4, which are our ingredient designs. We expand all points of the master design 13 times. The 4 -pc of the master design results in 134 -pcs. We obtain a $\{3,4\}$-URGDD of type 39^{4} with $r_{4}=13$, filling the groups results in a $\operatorname{URD}(\{3,4\} ; 156)$ with $r_{4}=13$.
There exists a 3-RGDD of type 52^{3} by Theorem 1.4. Filling the groups with a 4-RGDD of type 1^{52} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 156)$ with $r_{4}=17$.

There exists a labeled perfectly uniform semiframe $\{3,4\}-\operatorname{LRGDD}_{39}$ of type 1^{4} with $\tilde{r}_{3} \in\{14,12,10,9,8, \ldots, 1\}$ per group and $r_{4} \in\{11,15,19,21, \ldots, 37\}$, respectively, in the online resource [34]. This results in a perfectly uniform semiframe\{3, 4\}-SF of type 39^{4} with the same \tilde{r}_{3} per group and r_{4}, respectively, by Theorem 1.19 . We fill the groups with a 3-RGDD of type 1^{39} with $r_{3}=19$ (Theorem 1.4). This expands all partial 3-pc and induces additional 3-pc. Therefore, we obtain a $\operatorname{URD}(\{3,4\} ; 156)$ with $r_{4} \in\{11,15,19,21, \ldots, 37\}$.

There exists a 4 -RGDD of type 39^{4} with $r_{4}^{0}=39$ by Theorem 1.4. Filling the groups with a 3-RGDD of type 1^{39} (Theorem 1.4) results in a $\operatorname{URD}(\{3,4\} ; 156)$ with $r_{4}=39$. The assertion follows by Theorems 1.12 and 1.13.

Lemma 3.12. There exists a $\{3,4\}-U R G D D$ of type 36^{g} with $r_{4} \in\{0, g-1, g+$ $1, \ldots, 9(g-1)\}$ for $g \geq 4$, g odd.

Proof. Let $g \geq 4$ odd. There exists a 3-RGDD of type 36^{g} by Theorem 1.4.
There exists a 4-RGDD of type g^{4} by Theorem 1.4. This is also a $\{4, g\}$-URGDD of type $4^{g}, r_{4}=g-1, r_{g}=1$, which we take as the master design. We take the URGDDs of Lemma 2.2 as ingredient designs. We expand all points of the master design nine times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3,5,7$, or 94 -pcs. There exists a 3-RGDD of type 9^{g} by Theorem 1.4 for g odd. We obtain a $\{3,4\}$-URGDD of type 36^{g} with $r_{4} \in\{0, g-1, g+1, \ldots, 9(g-1)\}$, as we fill all parallel classes appropriately.

Lemma 3.13. There exists a $\{3,4\}-U R G D D$ of type $36^{3 i+1}$ for $i \geq 1$ and $r_{4} \in$ $\{0,4 i, 4 i+2,4 i+4, \ldots, 36 i\}$.

Proof. There exists a 3-RGDD of type $36^{3 i+1}$ for $i \geq 1$ by Theorem 1.4.
There exists a 4-RGDD of type $4^{3 i+1}$ for $i \geq 1$ by Theorem 1.4, which we take as the master design and all designs of Lemma 2.2 as ingredient designs. We expand all points of the master design nine times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 1, 3, 5, 7, or 9 4 -pcs. We obtain a $\{3,4\}$-URGDD of type $36^{3 i+1}$ with $r_{4} \in\{4 i, 4 i+2,4 i+4, \ldots, 36 i\}$, as we fill all parallel classes appropriately.

Lemma 3.14. There exists a $\{3,4\}-U R G D D$ of type $24^{3 i+1}$ for $i \geq 1$ and $r_{4} \in$ $\{0,2,4, \ldots, 16 i, 24 i\}$.

Proof. There exists a 4-RGDD of type $24^{3 i+1}$ for $i \geq 1$ by Theorem 1.4.
There exists a 4 -RGDD of type $4^{3 i+1}$ for $i \geq 1$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 0 , 2 , or 44 -pcs. We obtain a $\{3,4\}$-URGDD of type $24^{3 i+1}$ with $r_{4} \in\{0,2,4, \ldots, 16 i\}$, as we fill all parallel classes appropriately.

Lemma 3.15. There exists a $\{3,4\}-U R G D D$ of type $24^{3 i+1} r_{4} \in\{0,2,4, \ldots$, $22 i, 24 i\}$ for $i \geq 2$ and $i \notin\{3,11,15\}$.

Proof. There exists an $\operatorname{RTD}(6,3 i+1)$ for $i \geq 2, i \notin\{3,7,11,15\}$ by Theorem 1.3 and therefore also a $\{6,3 i+1\}$-URGDD of type $6^{3 i+1}$ with $r_{6}=3 i$ and $r_{3 i+1}=1$.

We apply the last as the master design. There exist a $\{3,4\}$-URGDD of type 4^{6}, $r_{4} \in\{0,2,4,6\}$ by Lemma 3.1 and a $4-$ RGDD of type $4^{3 i+1}$ with $r_{4}^{0}=4 i$ by Theorem 1.4, which we take as ingredient designs. We expand all points of the master design four times. All blocks of any parallel class have to be filled with the same ingredient design. Each $6-\mathrm{pc}$ of the master design results in $0,2,4$, or 64 -pcs. We obtain a $\{3,4\}$-URGDD of type $24^{3 i+1}$ with $r_{4} \in\{4 i, 4 i+2, \ldots, 4 i+18 i\}$, as we fill all parallel classes appropriately. The assertion follows by Lemma 3.14.

There exists a 4 -RGDD of type 2^{22} by Theorem 1.4 , which we take as the master design. We take the URGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $0,2, \ldots$, or 124 -pcs. We obtain a $\{3,4\}$-URGDD of type 24^{22} with $r_{4} \in\{0,2,4, \ldots, 168\}$, as we fill all parallel classes appropriately.

Lemma 3.16. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 168)$.
Proof. There exists a $\{3,4\}$-URGDD of type 24^{7} with $r_{4} \in\{0,2,4, \ldots, 44,48\}$ by Lemma 3.15. The assertion follows by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 24)$.

Lemma 3.17. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 180)$.

Proof. There exists a $\{3,4\}$-URGDD of type 36^{5} with $r_{4} \in\{0,4,6,8, \ldots, 36,48\}$ by Lemma 3.12 and Theorem 1.4. The assertion follows by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 36)$ (Lemma 3.2).

Lemma 3.18. \quad There exist all admissible $\{3,4\}-U R G D D$ of type 36^{4}. There exists a $\{3,4\}-U R G D D$ of type 36^{6} with $r_{4} \in\{0,2, \ldots, 54,60\}$.

Proof. There exists a $\{3,4\}$-URGDD of type 3^{4} with $r_{4}=1$ by Lemma 2.4. We expand all points of this design 12 times and obtain a $\{3,4\}$-URGDD of type 36^{4} with $r_{4}=2$. For $u=4$, the assertion follows by Lemma 3.13.

There exists a $\{3,4\}$-URGDD of type 4^{6} with $r_{4} \in\{0,2,4,6\}$ by Lemma 3.1 , which we take as the master design. We take the RGDDs of Lemma 2.2 and the 3-RGDD of type 9^{3} (Theorem 1.4) as ingredient designs. We expand all points of the master design nine times. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each $4-\mathrm{pc}$ of the master design results in 1, 3, 5, 7, or $94-\mathrm{pcs}$. We obtain a $\{3,4\}$-URGDD of type 36^{6} with $r_{4} \in\{0,2, \ldots, 54\}$. There exists a 4-RGDD of type 36^{6} with $r_{4}=60$ by Theorem 1.4.

Lemma 3.19. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 216)$.
Proof. There exists a $\{3,4\}$-URGDD of type 36^{6} with $r_{4} \in\{0,2, \ldots, 54,60\}$ by Lemma 3.18. The assertion follows by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 36)$.

Lemma 3.20. There exists a $\{3,4\}$-URGDD of type $36^{u}, r_{4} \in\{0,2, \ldots, 8(u-1)\}$ for $u \geq 7$.

Proof. There exists a 6 -RGDD of type $u^{6}, u \geq 7$, and $u \notin\{10,14,15,18$, $20,22,26,30,34,38,46,60\}$ by Theorem 1.3. This is also a $\{6, u\}$-URGDD of type $6^{u} r_{6}=u-1, r_{u}=1$, which we take as the master design. We take the URGDDs of Lemma 2.9 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4 -pc of the master design results in $0,2, \ldots, 84$-pcs. There exists a 3 -RGDD of type 6^{u} by Theorem 1.4. We obtain a $\{3,4\}$-URGDD of type 36^{u} with $r_{4} \in\{0,2, \ldots, 8(u-1)\}$, as we fill all parallel classes appropriately.

There exists a 4-RGDD of type 6^{u} with $r_{4}=2(u-1)$ for $u \in\{10,14,18,20$, $22,26,30,34,38,46,60\}$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 0,2 , or 44 -pcs. We obtain a $\{3,4\}$-URGDD of type 36^{u} with $r_{4} \in\{0,2,4, \ldots, 8(u-1)\}$, as we fill each parallel class appropriately.

There exists a $\{3,4\}$-URGDD of type 4^{15} with $r_{4} \in\{0,2, \ldots, 18\}$ by Lemma 3.4. We expand all points of this design nine times and obtain a $\{3,4\}$-URGDD of type 36^{15} with $r_{4} \in\{0,2, \ldots, 162\}$ by filling in with the $\{3,4\}$-URGDD of type 9^{4} from Lemma 2.2. \square

Lemma 3.21. There exists a $\{3,4\}$-frame of type 180^{u} for $u \geq 5$ and $\tilde{r}_{4} \in$ $\{4,6,8, \ldots, 60\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type 12^{u} for $u \geq 5$ with $\widehat{r}_{4}=4$ per group by Theorem 1.6, which we take as the master design. We take the RGDDs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $1,3,5, \ldots, 154$-pcs. We obtain a $\{3,4\}$-frame of type 180^{u} with $\tilde{r}_{4} \in\{4,6,8, \ldots, 60\}$ per group of the frame.

Lemma 3.22. For $i \geq 5$, there exists all admissible $\{3,4\}-U R G D D$ of type $36^{5 i+1}$, possibly excepting $r_{4} \in\{60 i-4,60 i-2\}$.

Proof. There exists a $\{3,4\}$-frame of type 180^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{4,6,8, \ldots, 60\}$ per group of the frame by Lemma 3.21. There exists a $\{3,4\}$-URGDD of type 36^{6} with $r_{4} \in\{0,2,4, \ldots, 54,60\}$ by Lemma 3.18. Adjoin 36 infinite points to the frame and fill each group with the above URGDD, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $36^{5 i+1}$ for $i \geq 5$ and $r_{4} \in\{4 i, 4 i+2, \ldots, 60(i-1)+54,60 i\}$. The assertion follows by Lemma 3.20 .

Lemma 3.23. \quad There exist all admissible $\{3,4\}$-URGDD of type 36^{u} for $u \in\{7,8,24\}$.

Proof. For $u=7$, the assertion follows by Lemmas 3.20 and 3.13.
There exists a $\{3,4\}$-URGDD of type 3^{8} with $r_{4} \in\{1,3,5,7\}$ by Lemma 3.1. There exists a $\{3,4\}$-URGDD of type 3^{24} with $r_{4} \in\{1,3, \ldots, 23\}$ by Lemma 3.5.

We expand all points of each design 12 times, taking the RGDDs of Lemma 2.3 as ingredient designs to obtain a $\{3,4\}$-URGDD of type 36^{8} with $r_{4} \in\{0,2, \ldots, 84\}$ and a $\{3,4\}$-URGDD of type 36^{24} with $r_{4} \in\{0,2, \ldots, 276\}$, respectively.

Lemma 3.24. There exists a $\{3,4\}-U R G D D$ of type 36^{17} for $r_{4} \in\{0,2,4, \ldots$, 176, 192\}.

Proof. There exists an $\operatorname{RTD}(12,17)$ by Theorem 1.3. Therefore, there exists a $\{12$, 17\}-URGDD of type 12^{17} with $r_{12}=16$ and $r_{17}=1$. We apply the latter as the master design. There exist a $\{3,4\}$-URGDD of type $3^{12}, r_{4} \in\{1,3,5,7,9,11\}$ by Lemma 3.2 and a $3-$ RGDD of type 3^{17} by Theorem 1.4 , which we take as ingredient designs. We expand all points of the master design three times. All blocks of any parallel class have to be filled with the same ingredient design. Each 12-pc of the master design results in 1 , $3, \ldots$, or 114 -pcs. We obtain a $\{3,4\}$-URGDD of type 36^{17} with $r_{4} \in\{16,18, \ldots, 176\}$, as we fill all parallel classes appropriately. The assertion follows by Lemma 3.20 and Theorem 1.4.

Lemma 3.25. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 300)$.
Proof. There exist a 3-RGDD of type 60^{5} and a 4-RGDD of type 60^{5} by Theorem 1.4.
There exists a 4-RGDD of type 5^{4} by Theorem 1.4. This is also a $\{4,5\}$-URGDD of type $4^{5} r_{4}=4, r_{5}=1$, which we take as the master design. We take the URGDDs of Lemma 2.5 and a 3-RGDD of type 15^{5} (Theorem 1.4) as ingredient designs. We expand all points of the master design 15 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3, \ldots, 15$ 4 -pcs. We obtain a $\{3,4\}$-URGDD of type 60^{5} with $r_{4} \in\{0,4,6, \ldots, 60,80\}$, as we fill all parallel classes appropriately. By filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 60)$ (Lemma 3.4), we obtain all admissible $\operatorname{URD}(\{3,4\} ; 300)$.

Lemma 3.26. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \in\{252,360,468\}$.
Proof. There exists a $\{3,4\}$-URGDD of type $36^{3 i+1}, r_{4} \in\{0,2,4, \ldots, 36 i\}$ for $i \in$ $\{2,3,4\}$ by Lemmas 3.13 and 3.20. Filling in all groups with the same appropriate URD $(\{3,4\} ; 36)$ results in all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \in\{252,360,468\}$.

We summarize the results of this section about small URDs.
Theorem 3.27. There exist all admissible $\operatorname{URD}(\{3,4\} ; v), v \equiv 0(\bmod 12), v<200$, except when $v=12$ and $r_{4}=3$ and possibly excepting:

$$
\begin{aligned}
& v=84: r_{4}=23 ; \\
& v=108: r_{4} \in\{29,31\} ; \\
& v=120: r_{4} \in\{27,29,31\} ; \\
& v=132: r_{4} \in\{35,37,39\} ; \\
& v=156: r_{4} \in\{41,43,45,47\} .
\end{aligned}
$$

Proof. The assertion follows by the lemmas of this section.

4. SOME $\{3,4\}$-URGDDS AND $\{3,4\}$-FRAMES

Lemma 4.1. There exists a $\{3,4\}$-frame of type 108^{u} for $u \geq 5, u \notin\{15,23,27\}$, $u \equiv 1(\bmod 2)$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 24\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type 18^{u} for $u \geq 5, u \notin\{15,23,27\}, u \equiv 1(\bmod 2)$ with $r_{4}=6$ per group by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any holey parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4 -pc of the master design results in 0, 2, or 44 -pcs. We obtain a $\{3,4\}$-frame of type 108^{u} with $\tilde{r}_{4} \in\{0,2,4, \ldots, 24\}$ per group of the frame.

Lemma 4.2. There exists a $\{3,4\}$-f rame of type 108^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{4,6$, $8, \ldots, 36\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type 12^{u} for $u \geq 5$ with $\bar{r}_{4}=4$ per group by Theorem 1.6, which we take as the master design. We take the RGDDs of Lemma 2.2 as ingredient designs. We expand all points of the master design nine times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $1,3,5,7$, or 94 -pcs. We obtain a $\{3,4\}$-frame of type 108^{u} with $\tilde{r}_{4} \in\{4,6,8, \ldots, 36\}$ per group of the frame.

Lemma 4.3. There exists a $\{3,4\}$-frame of type 144^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{0,2$, $4, \ldots, 48\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4 -frame of type 12^{u} for $u \geq 5$ with $\widehat{r}_{4}=4$ per group by Theorem 1.6, which we take as the master design. We take the RGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $0,2,4,6,8,10$, or 124 -pcs. We obtain a $\{3,4\}$-frame of type 144^{u} with $\tilde{r}_{4} \in\{0,2,4, \ldots, 48\}$ per group of the frame.

Lemma 4.4. There exists a $\{3,4\}$-frame of type 216^{u} for $u \geq 5$ and $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 72\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4 -frame of type 12^{u} for $u \geq 5$ with $\widehat{r}_{4}=4$ per group by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.6 as ingredient designs. We expand all points of the master design 18 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $0,2, \ldots$, or 184 -pcs. We obtain a $\{3,4\}$-frame of type 216^{u} with $\tilde{r}_{4} \in\{0,2,4, \ldots, 72\}$ per group of the frame.

Lemma 4.5. There exists a $\{3,4\}$-frame of type $36^{2 i+1}$ for $i \geq 2, i \notin\{3,11,13$, $17,19,23\}$ and $\tilde{r}_{4} \in\{0,2,4,6,8\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type $6^{2 i+1}$ with $\hat{r}_{4}=2$ per group for $i \geq 2$ and $i \notin\{3,11,13,17,19,23\}$ by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any holey parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in 0, 2, or 44 -pcs. We obtain a $\{3,4\}$-frame of type $36^{2 i+1}$ with $\tilde{r}_{4} \in\{0,2,4,6,8\}$ per group of the frame.

Lemma 4.6. There exists a $\{3,4\}-U R G D D$ of type $180^{\prime \prime}$ for $u \geq 4$ and $r_{4} \in\{0,4(u-$ 1), $4(u-1)+2, \ldots, 60(u-1)\}$.

Proof. There exists a 3-RGDD of type 180^{u} for $u \geq 4$ by Theorem 1.4.
There exists a 4-RGDD of type 12^{u} for $u \geq 4$ by Theorem 1.4, which we take as the master design and all designs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3,5, \ldots$, 154 -pcs. We obtain a $\{3,4\}$-URGDD of type 180^{u} with $r_{4} \in\{0,4(u-1), 4(u-1)+$ $2, \ldots, 60(u-1)\}$, as we fill all parallel classes appropriately.

Lemma 4.7. There exists a $\{3,4\}$-frame of type 360^{u} for $u \geq 5$ and $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 80\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4 -frame of type 60^{u} for $u \geq 5$ with $r_{4}=20$ per group by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any holey parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4 -pc of the master design results in 0,2 , or 44 -pcs. We obtain a $\{3,4\}$-frame of type 360^{u} with $\tilde{r}_{4} \in\{0,2,4, \ldots, 80\}$ per group of the frame.

Lemma 4.8. There exists a $\{3,4\}$-frame of type 360^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{8,10$, $12, \ldots, 120\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type 24^{u} for $u \geq 5$ with $\hat{r}_{4}=8$ per group by Theorem 1.6, which we take as the master design. We take the RGDDs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $1,3,5, \ldots, 154$-pcs. We obtain a $\{3,4\}$-frame of type 360^{u} with $\tilde{r}_{4} \in\{8,10,12, \ldots, 120\}$ per group of the frame.

Lemma 4.9. There exists a $\{3,4\}-U R G D D$ of type $180^{2 i}$ for $i \geq 2$ and $r_{4} \in\{0,2$, $4, \ldots, 40(2 i-1)\}$.

Proof. There exists a 4-RGDD of type $30^{2 i}$ for $i \geq 2$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 0, 2, or 44 -pcs. We obtain a $\{3,4\}$-URGDD of type $180^{2 i}$ with $r_{4} \in\{0,2,4, \ldots, 40(2 i-1)\}$, as we fill all parallel classes appropriately.

Theorem 4.10. There exists a $\{3,4\}-U R G D D$ of type $180^{2 i}$ for $i \geq 2$ and $r_{4} \in\{0,2$, $4, \ldots, 60(2 i-1)\}$.

Proof. The assertion follows by Lemmas 4.6 and 4.9.

Lemma 4.11. There exists a $\{3,4\}-U R G D D$ of type $120^{3 i+1}$ for $i \geq 1$ and $r_{4} \in$ $\{0,2,4, \ldots, 80 i\}$.

Proof. There exists a 4-RGDD of type $20^{3 i+1}$ with $r_{4}^{0}=20 i$ for $i \geq 1$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 0,2 , or 44 -pcs. We obtain a $\{3,4\}$-URGDD of type $120^{3 i+1}$ with $r_{4} \in\{0,2,4, \ldots, 80 i\}$, as we fill all parallel classes appropriately.

Lemma 4.12. There exists a $\{3,4\}-U R G D D$ of type $120^{3 i+1}$ for $i \geq 1$ and $r_{4} \in$ $\{8 i, 8 i+2, \ldots, 120 i\}$.

Proof. There exists a 4-RGDD of type $8^{3 i+1}$ with $r_{4}^{0}=8 i$ for $i \geq 1$ by Theorem 1.4 , which we take as the master design and all designs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3, \ldots, 154$-pcs. We obtain a $\{3,4\}$-URGDD of type $120^{3 i+1}$ with $r_{4} \in\{8 i, 8 i+2, \ldots, 120 i\}$, as we fill all parallel classes appropriately.

Theorem 4.13. There exists a $\{3,4\}-U R G D D$ of type $120^{3 i+1}$ for $i \geq 1$ and $r_{4} \in$ $\{0,2,4, \ldots, 120 i\}$.

Proof. The assertion follows by Lemmas 4.11 and 4.12.
Lemma 4.14. There exists a\{3, 4\}-URGDD of type $60^{3 i+1}$ for $i \geq 1$ and $r_{4} \in\{0,4 i$, $4 i+2, \ldots, 60 i\}$.

Proof. There exists a 3-RGDD of type $60^{3 i+1}$ for $i \geq 1$ by Theorem 1.4.
There exists a 4-RGDD of type $4^{3 i+1}$ with $r_{4}^{0}=4 i$ for $i \geq 1$ by Theorem 1.4, which we take as the master design and all designs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3, \ldots, 154$-pcs. We obtain a $\{3,4\}$-URGDD of type $60^{3 i+1}$ with $r_{4} \in\{4 i, 4 i+2, \ldots, 60 i\}$, as we fill all parallel classes appropriately.

Lemma 4.15. There exist $\{3,4\}-U R G D D$ s of type 12^{i} for
$i=5, r_{4} \in\{0,4,16\}$;
$i=10, r_{4} \in\{0,12,36\}$;
$i=325, r_{4} \in\{1,056,1,058, \ldots, 1,296\}$.
Proof. There exist a 3-RGDD of type 12^{i} and 4 -RGDD of type 12^{i} for all $i \geq 4$ by Theorem 1.4.

There exists a 4-RGDD of type 5^{4} by Theorem 1.4. This is also a $\{4,5\}$-URGDD of type $4^{5} r_{4}=4, r_{5}=1$, which we take as the master design. We take a 3-RGDD of type 3^{5} and a $\{3,4\}$-URGDD of type 3^{4} with $r_{4}=1$ from Lemma 2.4 as ingredient designs. We expand all points of the master design three times and obtain a $\{3,4\}$-URGDD of type 12^{5} with $r_{4}=4$.

There exists a 4-RGDD of type 4^{10} with $r_{4}=12$ by Theorem 1.4. We take a $\{3,4\}$-URGDD of type 3^{4} with $r_{4}=1$ from Lemma 2.4 as ingredient design. We expand all points of the master design three times and obtain a $\{3,4\}$-URGDD of type 12^{10} with $r_{4}=12$.

There exists a 4-RGDD of type 4^{13} by Theorem 1.4, which we take as master design. We take the RGDDs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times and obtain a $\{3,4\}$-URGDD of type 60^{13} with $r_{4} \in\{16,18, \ldots, 240\}$. There exists a $\{3,4\}$-URGDD of type 12^{5} with $r_{4} \in\{0,4,16\}$ from above. We fill all groups of size 60 with the same URGDD of type 12^{5}. We obtain a $\{3,4\}$-URGDD of type 12^{65} with $r_{4} \in\{16,18, \ldots, 256\}$. There exists a 4-RGDD of type $(12 \cdot 65)^{5}$ with $r_{4}^{0}=1,040$ by Theorem 1.4. We fill all groups with the same URGDD of type 12^{65}. The result is a $\{3,4\}$-URGDD of type 12^{325} with $r_{4} \in\{1,056,1,058, \ldots, 1,296\}$.

Lemma 4.16. There exists a $\{3,4\}-U R G D D$ of type $60^{6}, r_{4} \in\{0,2, \ldots, 90,100\}$.
There exists a $\{3,4\}$-URGDD of type $60^{7}, r_{4} \in\{0,4,6,8, \ldots, 120\}$.
There exists a $\{3,4\}$-URGDD of type $60^{24}, r_{4} \in\{0,2,4, \ldots, 460\}$.

Proof. There exists a $\{3,4\}$-URGDD of type 4^{6} with $r_{4} \in\{0,2,4,6\}$ by Lemma 3.1, which we take as master design. We take the RGDDs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3, \ldots$, or 154 -pcs. We obtain a $\{3,4\}$-URGDD of type 60^{6} with $r_{4} \in\{0,2, \ldots, 90,100\}$.

There exists a 5 -RGDD of type 7^{5} by Theorem 1.3. This is equivalent to a $\{5,7\}$ URGDD of type $5^{7} r_{5}=6, r_{7}=1$,which is our master design. We take a 3-RGDD of type 12^{7} (Theorem 1.4) and a $\{3,4\}$-URGDD of type 12^{5} with $r_{4} \in\{0,4,12\}$ (Lemma 4.15) as ingredient designs. We expand all points of the master design 12 times and obtain a $\{3,4\}$-URGDD of type 60^{7} with $r_{4}=4$.

There exists a 4-RGDD of type 7^{4} by Theorem 1.4. This is also a $\{4,7\}$-URGDD of type $4^{7} r_{4}=6, r_{7}=1$, which is our master design. We take a 3-RGDD of type 15^{7} (Theorem 1.4) and a $\{3,4\}$-URGDD of type 15^{4} with $r_{4} \in\{1,3,5,7,9,11,13,15\}$ (Lemma 2.5) as ingredient designs. We expand all points of the master design 15 times and obtain a $\{3,4\}$-URGDD of type 60^{7} with $r_{4}=6$. The assertion follows for $u=7$ by Lemma 4.14.

There exists a 4-RGDD of type 240^{6} with $r_{4}=400$ by Theorem 1.4. There exists a $\{3,4\}$-URGDD of type 4^{6} with $r_{4} \in\{0,2,4,6\}$ by Lemma 3.1, which we take as master design. We take the URGDDs of Lemma 2.10 as ingredient designs and expand all points of the master design 60 times. We thus obtain a $\{3,4\}$-URGDD of type 240^{6} with $r_{4} \in\{0,2,4, \ldots, 360,400\}$. We fill in all groups with the same $\{3,4\}$-URGDD of type 60^{4} with $r_{4} \in\{0,2,4, \ldots, 60\}$ and get a $\{3,4\}$-URGDD of type 60^{24} with $r_{4} \in$ $\{0,2,4, \ldots, 460\}$.

Lemma 4.17. There exists a $\{3,4\}$-frame of type $180^{2 i+1}$ for $i \geq 2, i \notin\{3,11$, $13,19,23\}$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 40\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type $30^{2 i+1}$ for $i \geq 2, i \notin\{3,11,13,19,23\}$ with $\hat{r}_{4}=10$ per group by Theorem 1.6, which we take as the master design. We take the RGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in 0 , 2, or 4 4-pcs. We obtain a $\{3,4\}$-frame of type $180^{2 i+1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 40\}$ per group of the frame.

Lemma 4.18. There exists a $\{3,4\}-U R G D D$ of type $60^{6 i+4}$ for $i \geq 1$ and $r_{4} \in$ $\{0,2,4, \ldots, 40(2 i+1)\}$.

Proof. There exists a $\{3,4\}$-frame of type $180^{2 i+1}$ for $i \geq 2$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 40\}$ per group of the frame by Lemma 4.17. There exists a $\{3,4\}$-URGDD of type 60^{4} with $r_{4} \in\{0,2,4, \ldots, 60\}$ by Lemma 2.10. Adjoin 60 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $60^{6 i+4}$ for $i \geq 2$ and $r_{4} \in\{0,2,4, \ldots, 40(2 i+1)\}$.
Now the case $i=1$. There exists a 4-RGDD of type 10^{10} with $r_{4}^{0}=30$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. We obtain a $\{3,4\}$-URGDD of type 60^{10} with $r_{4} \in\{0,2,4, \ldots, 120\}$, as we fill all parallel classes appropriately.

Theorem 4.19. There exists a $\{3,4\}$-URGDD of type $60^{6 i+4}$ with $r_{4} \in\{0,2,4, \ldots$, $60(2 i+1)\}$ for $i \geq 1$.

Proof. The assertion follows by Lemmas 4.14 and 4.18 , since $6 i+4=3(2 i+1)+1$.

Lemma 4.20. There exists a $\{3,4\}-U R G D D$ of type $60^{6 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,4$, $6,8, \ldots, 120 u\}$.

Proof. There exists a $\{3,4\}$-frame of type 360^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 80\}$ per group of the frame by Lemma 4.7. There exists a $\{3,4\}$-URGDD of type 60^{7} with $r_{4} \in\{0,4,6,8, \ldots, 120\}$ by Lemma 4.16.

Adjoin 60 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $60^{6 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,4,6,8, \ldots, 80 u\}$.

There exists a $\{3,4\}$-frame of type 360^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{8,10,12, \ldots, 120\}$ per group of the frame by Lemma 4.8. Adjoin 60 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. The result is a $\{3,4\}$-URGDD of type $60^{6 u+1}$ for $u \geq 5$ and $r_{4} \in\{8 u, 8 u+2,8 u+4, \ldots, 120 u\}$.

Remark, that it is no simple way to combine both frames, while for example we have no frame with $\tilde{r}_{4}<8$ in one group and $\tilde{r}_{4}>80$ in another group.

Lemma 4.21. There exists a $\{3,4\}-U R G D D$ of type 72^{u} with $r_{4} \in\{0,2,4, \ldots$, $16(u-1), 24(u-1)\}$ for $u \geq 4$.

Proof. There exists a 4-RGDD of type 72^{u} with $r_{4}^{0}=24(u-1)$ for $u \geq 4$ by Theorem 1.4. There exists a 4-RGDD of type 12^{u} with $r_{4}^{0}=4(u-1)$ for $u \geq 4$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in 0,2 , or 44 -pcs. We obtain a $\{3,4\}$-URGDD of type 72^{u} with $r_{4} \in\{0,2,4, \ldots, 16(u-1)\}$, as we fill all parallel classes appropriately.

Lemma 4.22. There exists a $\{3,4\}-U R G D D$ of type $72^{3 i+1}$ with $r_{4} \in\{0,2,4, \ldots$, $72 i\}$ for $i \geq 1$.

Proof. There exists a 4-RGDD of type $8^{3 i+1}$ with $r_{4}^{0}=8 i$ for $i \geq 1$ by Theorem 1.4, which we take as the master design. We take the RGDDs of Lemma 2.2 as ingredient designs. We expand all points of the master design nine times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3,5,7$, or 94 -pcs. We obtain a $\{3,4\}$-URGDD of type 72^{u} with $r_{4} \in\{8 i, 8 i+2,8 i+4, \ldots, 72 i\}$ for $i \geq 1$, as we fill all parallel classes appropriately. The assertion follows by Lemma 4.21.

Lemma 4.23. There exists a $\{3,4\}-U R G D D$ of type $84^{3 i+1}$ for $i \geq 1$ and $r_{4} \in\{0,4 i$, $4 i+2, \ldots, 84 i\}$.

Proof. There exists a 3-RGDD of type $84^{3 i+1}$ for $i \geq 1$ by Theorem 1.4.
There exists a 4-RGDD of type $4^{3 i+1}$ with $r_{4}^{0}=4 i$ for $i \geq 1$ by Theorem 1.4 , which we take as the master design and all designs of Lemma 2.7 as ingredient designs. We expand all points of the master design 21 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3, \ldots, 19$, or 214 -pcs. We obtain a $\{3,4\}$-URGDD of type $84^{3 i+1}$ with $r_{4} \in\{4 i, 4 i+2, \ldots, 84 i\}$, as we fill all parallel classes appropriately.

Lemma 4.24. There exists a $\{3,4\}$-URGDD of type 216^{u} for $u \geq 4$ and $r_{4} \in\{0,2$, $4, \ldots, 72(u-1)\}$.

Proof. There exists a uniformly resolvable $\{3,4\}$-URGDD of type $18^{4}, r_{4} \in\{0,2$, $4, \ldots, 18\}$ by Lemma 2.6, which is our ingredient design. There exists a 4 -RGDD of type 12^{u} for $u \geq 4$ by Theorem 1.4, which we take as the master design. We expand all points of the master design 18 times. We obtain a $\{3,4\}$-URGDD of type 216^{u} with $r_{4} \in\{0,2,4, \ldots, 72(u-1)\}$, as we fill all parallel classes appropriately.

Lemma 4.25. There exists a $\{3,4\}-U R G D D$ of type $12^{12 i+4}$ for $i \geq 1$ and $r_{4} \in\{0,2$, $4, \ldots, 48 i+12\}$.

Proof. There exists a 4-RGDD of type $1^{12 i+4}$ with $r_{4}^{0}=4 i+1$ for $i \geq 1$ by Theorem 1.4, which we take as the master design. We take the RGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $0,2,4,6,8,10$, or 124 -pcs. We obtain a $\{3,4\}$-URGDD of type $12^{12 i+4}$ with $r_{4} \in\{0,2,4, \ldots, 48 i+12\}$ for $i \geq 1$, as we fill all parallel classes appropriately.

Lemma 4.26. There exists a $\{3,4\}-U R G D D$ of type $12^{6 i+4}$ for $i \geq 2, i \notin\{13,19\}$ and $r_{4} \in\{0,2,4, \ldots, 8(2 i+1), 12(2 i+1)\}$.

Proof. There exists a $\{3,4\}$-frame of type $36^{2 i+1}$ for $i \geq 2, i \notin\{3,11,13,17,19,23\}$ and $\tilde{r}_{4} \in\{0,2,4,6,8\}$ per group of the frame by Lemma 4.5. There exists a $\{3,4\}$-URGDD of type 12^{4} with $r_{4} \in\{0,2, \ldots, 12\}$ by Lemma 2.3. Adjoin 12 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of $4-\mathrm{pcs}$ as are corresponding to the group. Then the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. We obtain a $\{3,4\}$-URGDD of type $12^{6 i+4}$ for $i \geq 2, i \notin\{3,11,13,17,19,23\}$ and $r_{4} \in\{0,2,4, \ldots, 8(2 i+1)\}$.

There exists a 4 -RGDD of type $2^{6 i+4}$ for $i \in\{3,17,23\}$ by Theorem 1.4 , which we take as master design and all designs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. We obtain a $\{3,4\}$-URGDD of type $12^{6 i+4}$ with $r_{4} \in\{0,2,4, \ldots, 8(2 i+1)\}$ for $i \in\{3,17,23\}$, as we fill all parallel classes appropriately.

There exists a $\{3,4\}$-URGDD of type 120^{7} with $r_{4} \in\{0,2,4, \ldots, 160\}$ by Lemma 4.11. Filling all groups with a 3-RGDD of type 12^{10} or a 4-RGDD of type 12^{10} as appropriate results in all $\{3,4\}$-URGDD of type 12^{70} with $r_{4} \in\{0,2,4, \ldots, 160+36\}$.

Lemma 4.27. There exists $a\{3,4\}-U R G D D$ of type $12^{15 u+1}$ for $u \geq 5$ and $r_{4} \in$ $\{4 u, 4 u+2,4 u+4, \ldots, 60 u\}$.

Proof. There exists a $\{3,4\}$-frame of type 180^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{4,6,8, \ldots, 60\}$ per group of the frame by Lemma 3.21. There exists a $\{3,4\}$-URGDD of type 12^{15+1} with $r_{4} \in\{0,2,4, \ldots, 60\}$ by Lemma 4.25 . Adjoin 12 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to the group
of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $12^{15 u+1}$ for $u \geq 5$ and $r_{4} \in\{4 u, 4 u+2,4 u+4, \ldots, 60 u\}$.

Lemma 4.28. There exists a $\{3,4\}$-URGDD of type $12^{30 i+16}$ for $i \geq 2$ and $r_{4} \in$ $\{0,2,4, \ldots, 60(2 i+1)\}$.

Proof. Let $j=5 i+2$. We have $30 i+16=6(5 i+2)+4=6 j+4$. For $i \in$ $\{3,11,13,19,23\}, j \in\{17,57,67,97,117\}$, respectively, there exists a $\{3,4\}$-URGDD of type $12^{6 j+4}$ with $r_{4} \in\{0,2,4, \ldots, 8(2 j+1)\}$ by Lemma 4.26.
There exists a $\{3,4\}$-frame of type $180^{2 i+1}$ for $i \geq 2, i \notin\{3,11,13,19,23\}$ and $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 40\}$ per group of the frame by Lemma 4.17. There exists a $\{3,4\}$-URGDD of type 12^{15+1} with $r_{4} \in\{0,2,4, \ldots, 60\}$ by Lemma 4.25 . Adjoin 12 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4 -pcs as are corresponding to the group. Then the number of 3 -pcs corresponding to the group of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $12^{30 i+16}$ for $i \geq 2$ and $r_{4} \in\{0,2,4, \ldots, 40(2 i+1)\}$.

The assertion follows in the same way by use of Lemma 3.21 with $u=2 i+1$.
Lemma 4.29. There exists a $\{3,4\}-U R G D D$ of type $24^{2 i+1}$ with $r_{4} \in\{0,2,4, \ldots, 8 i\}$ for $i \geq 2$.

Proof. Let $i \geq 2$. There exists a 4-RGDD of type $(2 i+1)^{4}$ by Theorem 1.4. This is also a $\{4,2 i+1\}$-URGDD of type $4^{2 i+1} r_{4}=2 i, r_{2 i+1}=1$, which we take as the master design. We take the RGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design six times. All blocks of any parallel class have to be filled with the same ingredient design. Each 4-pc of the master design results in 0, 2, or 44 -pcs. There exists a 3 -RGDD of type $6^{2 i+1}$ by Theorem 1.4. We obtain a $\{3,4\}$-URGDD of type $24^{2 i+1}$ with $r_{4} \in\{0,2,4, \ldots, 8 i\}$, as we fill all parallel classes appropriately.

Lemma 4.30. There exists a $\{3,4\}-U R G D D$ of type $24^{6 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,2$, $4, \ldots, 48 u-4,48 u\}$.

Proof. We take a $\{3,4\}$-frame of type 144^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 48\}$ per group of the frame by Lemma 4.3. There exists a $\{3,4\}$-URGDD of type 24^{7} with $r_{4} \in\{0,2,4, \ldots, 44,48\}$ by Lemma 3.15. Adjoin 24 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal.

Lemma 4.31. There exists a $\{3,4\}$-URGDD of type 108^{u} for $u \geq 4$ and $r_{4} \in\{0,4$ $(u-1), 4(u-1)+2, \ldots, 36(u-1)\}$.

Proof. There exists a 3-RGDD of type 108^{u} for $u \geq 4$ by Theorem 1.4.
There exists a 4-RGDD of type 12^{u} for $u \geq 4$ by Theorem 1.4, which we take as the master design and all designs of Lemma 2.2 as ingredient designs. We expand all points of the master design nine times. All blocks of any parallel class
have to be filled with the same ingredient design. Therefore, each parallel class expands in a way that several uniform parallel classes are created. Each 4-pc of the master design results in $1,3,5,7$, or 94 -pcs. We obtain a $\{3,4\}$-URGDD of type 108^{u} with $r_{4} \in\{0,4(u-1), 4(u-1)+2, \ldots, 36(u-1)\}$, as we fill all parallel classes appropriately.

Lemma 4.32. There exists a $\{3,4\}$-frame of type 324^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{4,6$, $8, \ldots, 36\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4 -frame of type 12^{u} for $u \geq 5$ with $\widehat{r}_{4}=4$ per group by Theorem 1.6 , which we take as the master design. We take the URGDDs of Lemma 2.8 as ingredient designs. We expand all points of the master design 27 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $1,3,5,7$, or 94 -pcs. We obtain a $\{3,4\}$-frame of type 324^{u} with $\tilde{r}_{4} \in\{4,6,8, \ldots, 36\}$ per group of the frame.

Lemma 4.33. There exists a $\{3,4\}$-frame of type 324^{u} for $u \geq 5, u \neq 12$, and $\tilde{r}_{4} \in$ $\{12,14, \ldots, 108\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type 36^{u} with $\widehat{r}_{4}=12$ per group for $u \geq 5, u \neq 12$ by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.2 as ingredient designs. We expand all points of the master design nine times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4 -pc of the master design results in $1,3,5,7$, or 94 -pcs. We obtain a $\{3,4\}$-frame of type 324^{u} with $\tilde{r}_{4} \in\{12,14, \ldots, 108\}$ per group of the frame.

Lemma 4.34. There exists a $\{3,4\}$-URGDD of type $12^{27 u+1}$ for $u \geq 5, u \neq 12$ and $r_{4} \in\{4 u, 4 u+2, \ldots, 108 u\}$.

Proof. There exists a $\{3,4\}$-frame of type 324^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{4,6,8, \ldots, 36\}$ per group of the frame by Lemma 4.32. There exists a $\{3,4\}$-URGDD of type 12^{27+1} with $r_{4} \in\{0,2,4, \ldots, 108\}$ by Lemma 4.25 . Adjoin 12 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. The result is a $\{3,4\}$-URGDD of type $12^{27 u+1}$ for $u \geq 5$ and $r_{4} \in\{4 u, 4 u+2, \ldots, 36 u\}$.

There exists a $\{3,4\}$-frame of type 324^{u} for $u \geq 5, u \neq 12$, and $\tilde{r}_{4} \in\{12,14, \ldots, 108\}$ per group of the frame by Lemma 4.33. Adjoin 12 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. The result is a $\{3,4\}$-URGDD of type $12^{27 u+1}$ for $u \geq 5$, $u \neq 12$, and $r_{4} \in\{12 u, 12 u+2, \ldots, 108 u\}$.

Lemma 4.35. There exists a $\{3,4\}-U R G D D$ of type $36^{4 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,4$, $6,8, \ldots, 48 u-12,48 u\}$.

Proof. We take a $\{3,4\}$-frame of type 144^{u} for $u \geq 5$ and $\tilde{r}_{3} \in\{72,69,66, \ldots, 0\}, \tilde{r}_{4} \in$ $\{0,2,4, \ldots, 48\}$ per group of the frame from Lemma 4.3. There exists a $\{3,4\}$-URGDD
of type 36^{5} with $r_{4} \in\{0,4,6,8, \ldots, 36,48\}$ by Lemma 3.12 and Theorem 1.4. Adjoin 36 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then, there are an equal number of 3-pcs corresponding to the group of the frame and its URGDD. The result is a $\{3,4\}$-URGDD of type $36^{4 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,4,6,8, \ldots, 48 u-12,48 u\}$.

Lemma 4.36. There exists a $\{3,4\}$-URGDD of type 24^{u} with $r_{4} \in\{0,2,4, \ldots, 7(u-$ 1) $\}$ for $u \in\{11,17,23,41,59\}$.

Proof. There exists an $\operatorname{RTD}(8, u)$ for $u \in\{11,23,41,59\}$, since all these u are prime. Therefore, there exists a $\{8, u\}$-URGDD of type 8^{u} with $r_{8}=u-1$ and $r_{u}=1$. We apply the latter as the master design. There exist a $\{3,4\}$-URGDD of type $3^{8}, r_{4} \in$ $\{1,3,5,7\}$ by Lemma 3.1 and a 3-RGDD of type 3^{u} by Theorem 1.4, which we take as ingredient designs. We expand all points of the master design three times. All blocks of any parallel class have to be filled with the same ingredient design. Each 8-pc of the master design results in $1,3,5$, or 74 -pcs. We obtain a $\{3,4\}$-URGDD of type 24^{u} with $r_{4} \in\{u-1, u+1, \ldots, 7(u-1)\}$, as we fill all parallel classes appropriately. The assertion follows by Lemma 4.29.

Lemma 4.37. There exists a $\{3,4\}$-frame of type $108^{4 i+1}$ for $i \geq 1$ and $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 36\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4 -frame of type $9^{4 i+1}$ for $i \geq 1$ with $r_{4}=3$ per group by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $0,2,4 \ldots, 124$-pcs. We obtain a $\{3,4\}$-frame of type $108^{4 i+1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 36\}$ per group of the frame.

Lemma 4.38. There exists a $\{3,4\}$-frame of type $252^{4 i+1}$ for $i \geq 1$ and $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 84\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4-frame of type $21^{4 i+1}$ for $i \geq 1$ with $r_{4}=7$ per group by Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $0,2,4, \ldots, 124$-pcs. We obtain a $\{3,4\}$-frame of type $252^{4 i+1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 84\}$ per group of the frame.

Lemma 4.39. There exists a $\{3,4\}$-frame of type $1,008^{u}$ for $u \geq 5$ and $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 336\}$ per group of the frame. This \tilde{r}_{4} can be chosen independently for each group.

Proof. There exists a 4 -frame of type 84^{u} for $u \geq 5$ with $\hat{r}_{4}=28$ per group by Theorem 1.6 , which we take as the master design. We take the RGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks of any parallel class have to be filled with the same ingredient design. Therefore, each holey parallel class expands in a way that several uniform holey parallel classes are created. Each 4-pc of the master design results in $0,2,4,6,8,10$, or 124 -pcs. We obtain a $\{3,4\}$-frame of type $1,008^{u}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 336\}$ per group of the frame.

Lemma 4.40. There exists an $\operatorname{IURD}(\{3,4\} ; 1,008+264)$ with a hole of size 264 and $r_{4} \in\{0,2,4, \ldots, 308,336\}, r_{4}^{0} \in\{1,3,5, \ldots, 85\}$.

Proof. There exists a $\{3,4\}$-frame of type 252^{5} and $\tilde{r}_{4} \in\{0,2,4, \ldots, 84\}$ per group of the frame by Lemma 4.38. There exists a $\{3,4\}$-URGDD of type 12^{21+1} with $r_{4} \in$ $\{0,2,4, \ldots, 56,84\}$ by Lemma 4.26. Adjoin 12 infinite points to the frame and fill four groups with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. The result are 4 -pcs with $r_{4} \in\{0,2,4, \ldots, 308,336\}$. We fill in the 24 groups of size 12, which are enclosed in the chosen four groups of size 72 , with a $\operatorname{URD}(\{3,4\} ; 12)$ and obtain four partial 3-pcs and one partial 4-pc. Together with the partial 4-pcs of the last group, we have $r_{4}^{0} \in\{1,3,5, \ldots, 85\}$ partial 4-pcs. The last group and the infinite points generate the hole of size 264.

Lemma 4.41. There exists a $\{3,4\}-U R G D D$ of type $48^{3 i+1}$ for $i \geq 1$ and $r_{4} \in\{0,2$, $4, \ldots, 48 i\}$.

Proof. There exists a 4-RGDD of type $4^{3 i+1}$ for $i \geq 1$ by Theorem 1.4, which we take as the master design and all designs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. We obtain a $\{3,4\}$-URGDD of type $48^{3 i+1}$ with $r_{4} \in\{0,2,4, \ldots, 48 i\}$, as we fill all parallel classes appropriately.

Lemma 4.42. There exists a $\{3,4\}-U R G D D$ of type 48^{6} with $r_{4} \in\{0,2,4, \ldots$, $72,80\}$. There exists a $\{3,4\}$-URGDD of type 48^{11} with $r_{4} \in\{0,2,4, \ldots, 160\}$.

Proof. There exists a $\{3,4\}$-URGDD of type 4^{6} with $r_{4} \in\{0,2,4,6\}$ by Lemma 3.1, which we take as master design. We take the RGDDs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. We obtain a $\{3,4\}$-URGDD of type 48^{6} with $r_{4} \in\{0,2,4, \ldots, 72,80\}$.

There exists a 4-RGDD of type 11^{4} by Theorem 1.4. This is also a $\{4,11\}$-URGDD of type $4^{11} r_{4}=10, r_{11}=1$, which we take as master design. We take a 3-RGDD of type 12^{11}, a 4-RGDD of type 12^{11}, and all designs of Lemma 2.3 as ingredient designs. We expand all points of the master design 12 times. We obtain a $\{3,4\}$-URGDD of type 48^{11} with $r_{4} \in\{0,2,4, \ldots, 160\}$, as we fill all parallel classes appropriately.

Lemma 4.43. There exists a $\{4,6\}$-frame of type $\left(3 ; 4^{1}\right)^{2(2 i-1)}\left(5 ; 6^{1}\right)^{1}$ for $i \geq 4$ and $i \neq 34$.

Proof. There exists a 4-RGDD of type $6^{2 i}$ for $i \geq 4$ and $i \neq 34$ by Theorem 1.4. We remove a point and obtain a $\{4,6\}$-frame of type $\left(3 ; 4^{1}\right)^{2(2 i-1)}\left(5 ; 6^{1}\right)^{1}$.

Lemma 4.44. There exists a $\{6, g\}$-frame of type $\left(5 ; 6^{1}\right)^{g}\left(g-1 ; g^{1}\right)^{1}$ for $g \geq 7$ and $g \notin\{10,14,15,18,20,22,26,30,34,38,46,60\}$.

Proof. There exists an RTD $(6, g)$ for $g \geq 7$ and $g \notin\{10,14,15,18,20,22,26,30,34$, $38,46,60\}$ by Theorem 1.3. Therefore, there exists a $\{6, g\}-U R G D D$ of type $1^{6 g}$ with $r_{6}=g$ and $r_{g}=1$. We remove a point and obtain a $\{6, g\}$-frame of type $\left(5 ; 6^{1}\right)^{g}(g-$ $\left.1 ; g^{1}\right)^{1}$ for the same g.

5. NEW CLASSES OF URDS

In this section, we derive the existence of URDs for some new modular classes. Specifically, we show that all admissible URDs exist for $v \equiv 36(\bmod 144), v \equiv 0(\bmod 60)$, and $v \equiv 36(\bmod 108)$, with a few possible exceptions. Our first main result follows.

Theorem 5.1. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 36(\bmod 144)$, possibly excepting $v=612$: $r_{4} \in\{189,191\}$.

Proof. There exists a $\{3,4\}$-URGDD of type $36^{4 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,4$, $6,8, \ldots, 48 u-12,48 u\}$ by Lemma 4.35 . Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 36)$ (Lemma 3.2) results in all admissible $\operatorname{URD}(\{3,4\} ; 144 u+36)$ for $u \geq 5$, while the gaps are covered by $\operatorname{URD}(\{3,4\} ; 36)$ with $r_{4} \in\{1,3,5, \ldots, 11\}$.

There exist all admissible $\operatorname{URD}(\{3,4\} ; 180)$ by Lemma 3.17.
There exists a $\{3,4\}$-URGDD of type 4^{9} with $r_{4} \in\{0,2,4,6,8,10\}$ by Lemma 3.2. We expand all points of this design nine times and obtain a $\{3,4\}$-URGDD of type 36^{9} with $r_{4} \in\{0,2, \ldots, 90,96\}$ by Lemma 2.2 and Theorem 1.4. By filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 36)$, we obtain all admissible $\operatorname{URD}(\{3,4\} ; 324)$.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 468)$ by Lemma 3.26.
There exists a $\{3,4\}$-URGDD of type $36{ }^{17}$ with $r_{4} \in\{0,2,4, \ldots, 176,192\}$ by Lemma 3.24. We obtain all admissible $\operatorname{URD}(\{3,4\} ; 612)$ possibly excepting $r_{4} \in\{189,191\}$ by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 36)$.

Lemma 5.2. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 0(\bmod 360)$.
Proof. There exists a $\{3,4\}$-URGDD of type 36^{10} for $r_{4} \in\{0,12,14,16, \ldots, 108\}$ by Lemma 3.13. We obtain all admissible $\operatorname{URD}(\{3,4\} ; 360)$ by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 36)$.

There exists a $\{3,4\}$-URGDD of type $180^{2 i}$ for $i \geq 2$ and $r_{4} \in\{0,2,4, \ldots, 60(2 i-1)\}$ by Theorem 4.10. There exist all admissible $\operatorname{URD}(\{3,4\} ; 180)$ by Lemma 3.17. The assertion follows by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 180)$.

Lemma 5.3. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 120(\bmod 360)$, possibly excepting $v=120: r_{4} \in\{27,29,31\}$.

Proof. The case $v=120$ is handled in Lemma 3.9.
There exists a $\{3,4\}$-URGDD of type $120^{3 i+1}$ for $i \geq 1$ and $r_{4} \in\{0,2,4, \ldots, 120 i\}$ by Theorem 4.13. There exist all admissible $\operatorname{URD}(\{3,4\} ; 120)$ possibly excepting
$r_{4} \in\{27,29,31\}$ by Lemma 3.9. There exists a $\operatorname{URD}(\{3,4\} ; 360 i+120), r_{4} \in\{1,3$, $5, \ldots, 120 i+23\}$ by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 120)$.

There exists a 4-RGDD of type $60^{6 i+2}$ with $r_{4}^{0}=20(6 i+1)$ for $i \geq 1$ by Theorem 1.4. We obtain a $\operatorname{URD}(\{3,4\} ; 360 i+120), r_{4} \in\{120 i+21,120 i+23, \ldots, 120 i+39\}$ by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 60)$ (Lemma 3.4).

Lemma 5.4. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 240(\bmod 360)$.

Proof. There exists a $\operatorname{URD}(\{3,4\} ; 240)$ by Theorem 1.14.
There exists a $\{3,4\}$-URGDD of type $60^{6 i+4}$ with $r_{4} \in\{0,4,6,8, \ldots, 60(2 i+1)\}$ for $i \geq 1$ by Theorem 4.19. There exist all admissible $\operatorname{URD}(\{3,4\} ; 60)$ by Lemma 3.4. The assertion follows by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\}$; $60)$.

Theorem 5.5. \quad There exist all admissible $U R D(\{3,4\} ; v)$ for $v \equiv 0(\bmod 120)$, possibly excepting $v=120: r_{4} \in\{27,29,31\}$.

Proof. The assertion follows by Lemmas 5.2-5.4.
Lemma 5.6. There exists a $\{3,4\}-U R G D D$ of type $60^{2 i+1}$ with $r_{4} \in\{0,4,8, \ldots$, $40 i-24,40 i-16,40 i-12,40 i\}$ for $i \geq 2$.

Proof. There exists a 5-RGDD of type $(2 i+1)^{5}$ for $i \geq 2$ by Theorem 1.3. This is also a $\{5,2 i+1\}$-URGDD of type $5^{2 i+1}, r_{5}^{0}=2 i, r_{2 i+1}^{0}=1$, which we take as the master design. There exist a 3-RGDD of type $12^{2 i+1}$, a 4-RGDD of type $12^{2 i+1}$ with $r_{4}^{0}=8 i$, and a $\{3,4\}$-URGDD of type 12^{5} with $r_{4} \in\{0,4,16\}$ by Lemma 4.15 , which we take as ingredient designs. We expand all points of the master design 12 times. Each 5-pc of the master design results in 0,4 , or 164 -pcs. We obtain a $\{3,4\}$-URGDD of type $60^{2 i+1}$ with $r_{4} \in$ $\{0,4,8, \ldots, 32 i-24,32 i-16,32 i-12,32 i\} \cup\{8 i, 8 i+4,8 i+8, \ldots, 40 i-24$, $40 i-16,40 i-12,40 i\}$, as we fill all parallel classes appropriately.

Lemma 5.7. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 120 i+60)$ for $i \geq 1$.
Proof. There exist all admissible $\operatorname{URD}(\{3,4\} ; 180)$ by Lemma 3.17. There exists a $\{3,4\}$-URGDD of type $60^{2 i+1}$ with $r_{4} \in\{0,4,8, \ldots, 40 i-24,40 i-16,40 i-$ 12, $40 i\}$ for $i \geq 2$ by Lemma 5.6. By filling with $\operatorname{URD}(\{3,4\} ; 60)$ (Lemma 3.4), we obtain a $\operatorname{URD}(\{3,4\} ; 120 i+60)$ with $r_{4} \in\{1,3, \ldots, 40 i+19\}$ for $i \geq 2$.

Now we are ready for our second main result.
Theorem 5.8. \quad There exist all admissible $U R D(\{3,4\} ; v)$ for $v \equiv 0(\bmod 60)$, possibly excepting $v=120: r_{4} \in\{27,29,31\}$.

Proof. The assertion follows by Lemma 3.4, Theorem 5.5, and Lemma 5.7.
Theorem 5.9. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 72(\bmod 216)$.
Proof. There exists a $\{3,4\}$-URGDD of type $72^{3 i+1}$ with $r_{4} \in\{0,2,4, \ldots, 72 i\}$ for $i \geq 1$ by Lemma 4.22. There exist all admissible $\operatorname{URD}(\{3,4\} ; 72)$ by Lemma 3.5. The assertion follows by filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 72)$.

Lemma 5.10. There exist all admissible $\operatorname{URD}(\{3,4\} ; 108 u+36)$ for $u \geq 5$, possibly excepting $r_{4} \in\{11,13, \ldots, 4 u-1\}$ for $u \equiv 0(\bmod 2)$.

Proof. There exists a $\{3,4\}$-frame of type 108^{u} with $\tilde{r}_{4} \in\{4,6, \ldots, 36\} 4$-pcs per group for all $u \geq 5$ from Lemma 4.2. There exists a \{3, 4\}-URGDD of type 36^{4} with $r_{4} \in\{0,4,6,8, \ldots, 36\}$ by Lemma 3.13. Adjoin 36 infinite points to the frame and fill each group together with the infinite points with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group of the frame. Therefore, the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $36^{3 u+1}$ for $u \geq 5$ and $r_{4} \in\{4 u, 4 u+$ $2,4 u+4, \ldots, 36 u\}$. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 36)$ from Lemma 3.17 results in all admissible $\operatorname{URD}(\{3,4\} ; 108 u+36)$ for $u \geq 5$ and $r_{4} \in\{4 u+1,4 u+3,4 u+5, \ldots, 36 u+11\}$.

When $u \equiv 1(\bmod 2), u \geq 5$, and $u \notin\{15,23,27\}$, there exists a $\{3,4\}$-frame of type 108^{u} with $\tilde{r}_{4} \in\{0,2,4, \ldots, 24\} 4$-pcs per group by Lemma 4.1. Proceeding as above, using this frame in place of that above, gives a $\{3,4\}$-URGDD of type $36^{3 u+1}$ with $r_{4} \in\{0,2,4, \ldots, 24 u\}$. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\}$; 36) from Lemma 3.17 results in all admissible $\operatorname{URD}(\{3,4\} ; 108 u+36)$ with $r_{4} \in$ $\{1,3,5, \ldots, 24 u+11\}$ when $u \geq 5, u \equiv 1(\bmod 2)$, and $u \notin\{15,23,27\}$.
To deal with the cases $u \in\{15,23,27\}\}$, take $\hat{u}=(3 u+1) / 2$, so $\hat{u} \in\{23,35,41\}$, respectively. There exists a $\{3,4\}$-RGDD of type $72^{\hat{u}}$ with $\hat{r}_{4} \in\{0,2,4, \ldots, 16(\hat{u}-1)\}$ by Lemma 4.21 . Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 72) \bar{r}_{4} \in$ $\{1,3\}$ from Theorem 1.12 results in a $\operatorname{URD}(\{3,4\} ; 72 \hat{u})$ with $r_{4} \in\{1,3,5, \ldots, 16(\hat{u}-$ 1) +3$\}$ for $\hat{u} \in\{23,35,41\}$.

Note that $72 \hat{u}=108 u+36$ and $16(\hat{u}-1)=8(3 u+1)=24 u+8$, so there exists a $\operatorname{URD}(\{3,4\} ; 108 u+36)$ with $r_{4} \in\{1,3,5, \ldots, 24 u+11\}$ for $u \in\{15,23,27\}$.

There exists a $\operatorname{URD}(\{3,4\} ; 108 u+36)$ with $r_{4} \in\{1,3,5,7,9\}$ for $u \equiv 0(\bmod 2)$ by Theorems 1.4, 1.12, and 2.12.

Lemma 5.11. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; 216 u+36)$ for $u \geq 3$.
Proof. We take a $\{3,4\}$-frame of type 216^{u} for $u \geq 5$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 72\}$ per group of the frame from Lemma 4.4. There exists a $\{3,4\}$-URGDD of type 36^{7} with $r_{4} \in\{0,2,4, \ldots, 72\}$ by Lemma 3.23. Adjoin 36 infinite points to the frame and fill each group with one of the above URGDDs, where the infinite points form a group. Each group of the frame has to be filled with a URGDD with the same number of 4-pcs as are corresponding to the group of the frame. Therefore, the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal. The result is a $\{3,4\}$-URGDD of type $36^{6 u+1}$ for $u \geq 5, r_{4} \in\{0,2,4, \ldots, 72 u\}$. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 36)$ from Lemma 3.2 results in all admissible $\operatorname{URD}(\{3,4\} ; 216 u+36)$ for $u \geq 5$.

There exists a $\{3,4\}$-URGDD of type $36^{u}, r_{4} \in\{0,2, \ldots, 8(u-1)\}$ for $u \in\{19,25\}$ by Lemma 3.20. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 36)$ results in all $\operatorname{URD}(\{3,4\} ; 648)$ and $\operatorname{URD}(\{3,4\} ; 900)$ for $r_{4} \in\{1,3,5, \ldots, 8(u-1)+11\}$. Therefore, there exist all admissible $\operatorname{URD}(\{3,4\} ; 648)$ and $\operatorname{URD}(\{3,4\} ; 900)$ by Lemma 5.10.

Now we are ready for our third main result.

Theorem 5.12. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 36(\bmod 108)$.
Proof. There exist all admissible $\operatorname{URD}(\{3,4\} ; 144)$ by Theorem 1.14.
The assertion follows by Lemmas 3.25, 5.10, and 5.11.

6. URDs FOR v CONGRUENT 24 MODULO 48

There exist all admissible URDs for $v \equiv 0(\bmod 48)$ by Theorem 1.14. In this section, we deal with the case $v \equiv 24(\bmod 48)$ by considering the cases v congruent 24,72 , and 120 modulo 144 . We firstly obtain the lower half of all admissible values of r_{4}.

Theorem 6.1. There exists a $U R D(\{3,4\} ; 48 i+24)$ with $r_{4} \in\{1,3, \ldots, 8 i+7\}$.
Proof. There exist all admissible URD (\{3, 4\};72) by Lemma 3.5.
There exists a $\{3,4\}$-URGDD of type $24^{2 i+1}$ with $r_{4} \in\{0,2,4 \ldots, 8 i\}$ for $i \geq 2$ by Lemma 4.29. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 24)$ results in all desired designs.

Theorem 6.2. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 24(\bmod 144)$ possibly excepting $v=456$ and $r_{4} \in\{141,143\}$.

Proof. There exists a $\{3,4\}$-URGDD of type $24^{6 u+1}$ for $u \geq 5$ and $r_{4} \in\{0,2,4, \ldots$, $48 u-4,48 u\}$ by Lemma 4.30 . Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 24)$ results in all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 24(\bmod 144), v \geq 744$.

There exist all admissible $\operatorname{URD}(\{3,4\} ; 168)$ by Lemma 3.16.
There exists a $\{3,4\}$-URGDD of type 24^{13} with $r_{4} \in\{0,2,4, \ldots, 88,96\}$ by Lemma 3.15. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 24)$ results in all admissible $\operatorname{URD}(\{3,4\} ; 312)$.
There exists a $\{3,4\}$-URGDD of type 24^{19} with $r_{4} \in\{0,2,4, \ldots, 132,144\}$ by Lemma 3.15. Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 24)$ results in all admissible $\operatorname{URD}(\{3,4\} ; 456)$, possibly excepting $r_{4} \in\{141,143\}$. There exist all admissible $\operatorname{URD}(\{3,4\} ; 600)$ by Theorem 5.5.

Lemma 6.3. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 72(\bmod 432)$.
Proof. The assertion follows by Theorem 5.9.
Theorem 6.4. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 0(\bmod 216)$.
Proof. There exists a $\{3,4\}$-URGDD of type 216^{u} for $u \geq 4$ and $r_{4} \in\{0,2,4, \ldots$, $16(u-1), 16(u-1)+14, \ldots, 72(u-1)\}$ by Lemma 4.24.
Filling in all groups with the same appropriate $\operatorname{URD}(\{3,4\} ; 216)$ (Lemma 3.19) results in all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 0(\bmod 216), v \geq 1,080$.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 216)$ by Lemma 3.19.
There exist all admissible $\operatorname{URD}(\{3,4\} ; v), v \in\{432,864\}$ by Theorem 1.14.
There exist a $\{3,4\}$-URGDD of type 108^{6} with $r_{4} \in\{0,20,22, \ldots, 180\}$ by Lemma 4.31. There exist all admissible $\operatorname{URD}(\{3,4\} ; 648)$ by filling all groups
appropriately with the same $\operatorname{URD}(\{3,4\} ; 108)$ (Lemma 3.7). For example $r_{4}=180+$ $29=176+33$ and $r_{4}=180+31=178+33$.

Corollary 6.5. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 216(\bmod 432)$.
Proof. The assertion follows by Theorem 6.4.
Lemma 6.6. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 360(\bmod 432)$.
Proof. We have $432 i+360=108(4 i)+324+36=108(4 i+3)+36$. The assertion follows by Theorem 5.12.

Theorem 6.7. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 72(\bmod 144)$.
Proof. The assertion follows by Lemma 6.3, Corollary 6.5, and Lemma 6.6.
This leaves the case $v \equiv 120(\bmod 144)$. We begin by giving some lemmas and a theorem that we will use later.

Lemma 6.8. There exist all admissible $\operatorname{URD}(\{3,4\} ; 324 u+12)$ for $u \geq 5$, possibly excepting $\hat{r}_{4} \in\{11,13, \ldots, 4 u-1\}$.

Proof. There exists all admissible $\operatorname{URD}(\{3,4\} ; 324 \cdot 12+12 \equiv 65 \cdot 60)$ by Theorem 5.8. There exists a $\{3,4\}$-URGDD of type $12^{27 u+1}$ for $u \geq 5, u \neq 12$ and $r_{4} \in\{4 u, 4 u+2, \ldots, 108 u\}$ by Lemma 4.34. The assertion follows by filling all groups with a $\operatorname{URD}(\{3,4\} ; 12)$ and by Theorem 1.11.

Theorem 6.9. \quad There exist all admissible $U R D(\{3,4\} ; 360 i+192)$ for $i \geq 2$.
Proof. There exists a $\{3,4\}$-URGDD of type $12^{30 i+16}$ for $i \geq 2$ and $r_{4} \in\{0,2$, $4, \ldots, 60(2 i+1)\}$ by Lemma 4.28. There exist all admissible $\operatorname{URD}(\{3,4\} ; 360 i+$ 192) for $i \geq 2$ by filling in all groups with a $\operatorname{URD}(\{3,4\} ; 12)$ with $r_{4}=1$ and by Theorem 1.11.

Lemma 6.10. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 120+144(\bmod$ 1008), $v \geq 5,304$.

Proof. There exists a $\{3,4\}$-frame of type $1,008^{u}$ for $u \geq 5$ and $\tilde{r}_{4} \in\{0,2,4, \ldots$, $336\}$ per group of the frame by Lemma 4.39. There exists a $\operatorname{URD}(\{3,4\} ; 1,272) r_{4} \in$ $\{1,3,5, \ldots, 423\}$ by Theorem 6.9. There exists a $\operatorname{IURD}(\{3,4\} ; 1,008+264)$ with a hole of size 264 and $r_{4} \in\{0,2,4, \ldots, 308,336\}, r_{4}^{0} \in\{1,3,5, \ldots, 85\}$ by Lemma 4.40. Adjoin 264 infinite points to the frame and fill $u-1$ groups with the above IURD with the same r_{4}^{0} but different r_{4}, where the infinite points fill the hole. Each group of the frame has to be filled with the same number of 4-pcs as are corresponding to the group. Then the number of 3 -pcs corresponding to the group of the frame and its URGDD is also equal. We thus obtain $\hat{r}_{4} \in\{0,2,4, \ldots, 336(u-2)-28,336(u-1)\} 4$-pcs. The partial 4-pcs of all IURDs combine to form partial 4-pcs over all $u-1$ groups, while in each case all r_{4}^{0} are equal. We obtain $\hat{r}_{4}^{0} \in\{1,3,5, \ldots, 85\}$ partial 4-pcs over all $u-1$ groups. Together with the $\tilde{r}_{4} \in\{0,2,4, \ldots, 336\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 336+85\}$ partial 4-pcs over all $u-1$ groups.

The $\operatorname{URD}(\{3,4\} ; 1,272)$ is used to fill in the last group together with the infinite points. We thus obtain ${\underset{r}{4}}^{\in}\{1,3,5, \ldots, 336+85\} \cap\{1,3, \ldots, 423\}=$ $\{1,3, \ldots, 336+85\}$ 4-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 1,008 u+264)$ for $u \geq 5$ and $r_{4} \in\{1,3,5, \ldots, 336 u+85\}$. We apply Theorem 1.11 for the greatest r_{4}.

Lemma 6.11. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \in\{696,1,704,5,736\}$.

Proof. There exists an 8-RGDD of type $8^{7 i+1}$ for $i \in\{4,10,34\}$ by [35], which we take as the master design. There exists a $\{3,4\}$-URGDD of type 3^{8} with $r_{4} \in\{1,3,5,7\}$ by Lemma 3.1. We expand all points of the master design three times and obtain a $\{3,4\}$-URGDD of type $24^{7 i+1}$ with $r_{4} \in\{8 i, 8 i+2, \ldots, 56 i\}$ for $i \in\{4,10,34\}$. The assertion follows by filling in all groups with the same $\operatorname{URD}(\{3,4\} ; 24)$ and by Theorem 6.1.

For the last subclass $v \equiv 120(\bmod 144)$, we deal with v congruent 120,264 , and 408 modulo 432.

Lemma 6.12. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 408(\bmod 432), v \geq$ 1, 704.

Proof. There exists a $\{4,6\}$-frame of type $\left(3 ; 4^{1}\right)^{2(2 i-1)}\left(5 ; 6^{1}\right)^{1}$ for $i \geq 4$ and $i \neq 34$ by Lemma 4.43.

We take all $\{3,4\}$-URGDD of type 36^{4} with $r_{4} \in\{0,2, \ldots, 36\}$ (Lemma 3.18) and 36^{6} with $r_{4} \in\{0,2, \ldots, 54,60\}$ (Lemma 3.18) as ingredient designs. We expand all points of the frame 36 times and obtain a $\{3,4\}$-frame of type $108^{2(2 i-1)} 180^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 36\}$ per group of size 108 and $\breve{r}_{4} \in\{0,2, \ldots, 54,60\}$ per group of size 180.

There exists a $\{3,4\}$-URGDD of type 12^{10} with $r_{4} \in\{0,12,36\}$ by Lemma 4.15 . Adjoin 12 infinite points to the frame and fill all groups of size 108 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,12,24, \ldots, 72(2 i-1)-24,72(2 i-1)\} 4$-pcs over all points.

We fill each new group of size 12 with a $\operatorname{URD}(\{3,4\} ; 12)$ with $r_{4}=1$ from Lemma 2.4, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 108 with $r_{4}^{0}=1$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 54,60\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 55,61\}$ partial 4-pcs which miss exactly the points in the group of size 180 .

The $\operatorname{URD}(\{3,4\} ; 192)$ (Theorem 1.14$)$ with $r_{4} \in\{1,3, \ldots, 63\}$ is used to fill in the last group together with the infinite points. We thus obtain $\bar{r}_{4} \in\{1,3, \ldots, 55,61\}$ 4-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 216(2 i-1)+192)$ with $r_{4} \in\{1,3, \ldots, 72(2 i-1)+$ $55,72(2 i-1)+61\}$. The assertion follows by Theorems 1.11 and 1.13.

We now deal with the case $i=34$ in a similar manner. There exists a 4-RGDD of type 24^{17} by Theorem 1.4. We remove a point and obtain a $\{4,24\}$-frame of type $\left(3 ; 4^{1}\right)^{128}\left(23 ; 24^{1}\right)^{1}$.

We take all $\{3,4\}$-URGDD of type 36^{4} with $r_{4} \in\{0,2, \ldots, 36\}$ (Lemma 3.18) and 36^{24} with $r_{4} \in\{0,2, \ldots, 276\}$ (Lemma 3.23) as ingredient designs. We expand all points of the frame 36 times and obtain a $\{3,4\}$-frame of type $108^{128} 828^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 36\}$ per group of size 108 and $\breve{r}_{4} \in\{0,2, \ldots, 276\}$ per group of size 828.

There exists a $\{3,4\}$-URGDD of type 12^{10} with $r_{4} \in\{0,12,36\}$ by Lemma 4.15. Adjoin 12 infinite points to the frame and fill all groups of size 108 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,12,24, \ldots, 4,608-24,4,608\} 4$-pcs over all points.

We fill each new group of size 12 with a $\operatorname{URD}(\{3,4\} ; 12)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 108 with $r_{4}^{0}=1$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 276\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in$ $\{1,3,5, \ldots, 277\}$ partial 4-pcs which miss exactly the points in the group of size 828.

The $\operatorname{URD}(\{3,4\} ; 840)$ (Theorem 5.8) with $r_{4} \in\{1,3, \ldots, 279\}$ is used to fill in the last group together with the infinite points. We thus obtain $\hat{r}_{4} \in\{1,3, \ldots, 277\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 13,824+840 \equiv 216 \cdot 67+192)$ with $r_{4} \in\{1,3, \ldots, 4,608+$ 277\}. The assertion for this case follows by Theorems 1.11 and 1.13.

Theorem 6.13. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 408(\bmod 432)$, possibly excepting $v=408, r_{4} \in\{121,123,125,127\}$.

Proof. There exists a $\{3,4\}$-URGDD of type 24^{17} with $r_{4} \in\{0,2,4, \ldots, 112,128\}$ by Lemma 4.36 and Theorem 1.4. We fill all groups with the same $\operatorname{URD}(\{3,4\} ; 24)$ and obtain a $\operatorname{URD}(\{3,4\} ; 408)$ with $r_{4} \in\{1,3, \ldots, 119,129,131,133,135\}$.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 840)$ by Theorem 5.8.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 1,272)$ by Theorem 6.9.
The assertion follows by Lemma 6.12.

Lemma 6.14. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 120(\bmod 432)$, possibly excepting $r_{4} \in\{(v / 3)-13,(v / 3)-11,(v / 3)-9\}$.

Proof. The case $v=120$ is handled in Lemma 3.9.
There exists a $\{3,4\}$-frame of type $108^{4 i+1}$ for $i \geq 1$ and $\tilde{r}_{4} \in\{0,2,4, \ldots, 36\}$ per group of the frame by Lemma 4.37.

There exists a $\{3,4\}$-URGDD of type 12^{10} with $r_{4} \in\{0,12,36\}$ by Lemma 4.15 .
Adjoin 12 infinite points to the frame and fill $4 i$ groups with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,12,24, \ldots, 144 i-$ 24, $144 i\} 4$-pcs.
We fill each new group of size 12 with a $\operatorname{URD}(\{3,4\} ; 12)$, but not the infinite points. $\operatorname{A} \operatorname{URD}(\{3,4\} ; 120)(\operatorname{Lemma} 3.9)$ with $r_{4} \in\{1,3, \ldots, 25,33,35,37,39\}$ is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{1,3,5, \ldots$, $37\} \cap\{1,3, \ldots, 25,33,35,37,39\}=\{1,3, \ldots, 25,33,35,37\}$ 4-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 432 i+120)$ for $i \geq 1$ with $r_{4} \in\{1,3,5, \ldots, 144 i+25,144 i+$ $33,144 i+35,144 i+37\}$. We apply Theorem 1.11 for the greatest r_{4}.

Lemma 6.15. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 120(\bmod 432)$, $v \geq 8,328$.

Proof. There exists a 5-GDD of type $(12 i)^{5}(4 j)^{1}$ for $i \geq 5,4 j \leq(4 / 3) \cdot 12 i=16 i$, i.e. $j \leq 4 i$ by Theorem 1.2, which is our master design. We take a 4 -frame of type 3^{5} (Theorem 1.6) as ingredient design. We expand all points of the master design three times and obtain a 4 -frame of type $(36 i)^{5}(12 j)^{1}$.

We take all $\{3,4\}$-URGDD of type 9^{4} with $r_{4} \in\{1,3,5,7,9\}$ (Lemma 2.3) as ingredient designs. We expand all points of the 4 -frame nine times and obtain a $\{3,4\}$-frame of type $(324 i)^{5}(108 j)^{1}$ with $\tilde{r}_{4} \in\{12 i, 12 i+2,12 i+4, \ldots, 108 i\}$ per group of size $324 i$ and $r_{4} \in\{4 j, 4 j+2, \ldots, 36 j\}$ per group of size $108 j$.

There exists a $\{3,4\}$-URGDD of type $12^{27 i+1}$ with $r_{4} \in\{4 i, 4 i+2, \ldots, 108 i\}$ for $i \geq 5, i \neq 12$ by Lemma 4.34. Adjoin 12 infinite points to the frame and fill all groups of size $324 i$ with one of the above URGDDs, where the infinite points form a group. We thus obtain $r_{4}^{\prime} \in\{60 i, 60 i+2,60 i+4, \ldots, 540 i\}$ 4-pcs which cover all points.

We fill each new group of size 12 with a $\operatorname{URD}(\{3,4\} ; 12)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size $324 i$ with $r_{4}^{0}=1$. Together with the $\breve{r}_{4} \in\{4 j, 4 j+2, \ldots, 36 j\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{4 j+1,4 j+3, \ldots, 36 j+1\}$ partial 4 -pcs which miss exactly the points of the group of size $108 j$.

There exists a $\operatorname{URD}(\{3,4\} ; 108 j+12)$ with $r_{4}=36 j+4-3=36 j+1$ by Theorem 1.13. This URD is used to fill in the last group together with the infinite points. We thus obtain $r_{4}=36 j+14$-pcs, which adds to r_{4}^{\prime} above.

Now let $v \equiv 120(\bmod 432), v \geq 8,328$, and $i=\lfloor(v-120) / 1,620\rfloor$, then we have $i \geq 5$. The remainder $R=v-120-1,620\lfloor(v-120) / 1,620\rfloor \equiv 0(\bmod 108)$ and is smaller than 1,620. Let $j=1+(R / 108)$, then we have $1 \leq j \leq 15<4 i$. In particular, we have $v=1,620 i+108 j+12$.

When $i \neq 12$, the result from above is a $\operatorname{URD}(\{3,4\} ; v)$ with $r_{4} \in\{60 i+36 j+1$, $60 i+36 j+3, \ldots, 540 i+36 j+1\}$. The assertion follows by Theorems 6.1 and 1.11.

In the case $i=12$, there exists a $\{3,4\}$-URGDD of type $12^{27 i+1}$ with $r_{4} \in\{1,056$, $1,058, \ldots, 1,296=108 i\}$ by Lemma 4.15. The assertion for this case follows by Lemma 6.14.

Theorem 6.16. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 120(\bmod 432)$, possibly excepting $v \in\{120,552,984\}$, and $r_{4} \in\{(v / 3)-13,(v / 3)-11,(v / 3)-9\}$.

Proof. By Lemmas 6.14 and 6.15, there are 16 values to consider $v \in\{1,416,1,848$, $2,280,2,712,3,144,3,576,4,008,4,440,4,872,5,304,5,736,6,168,6,600,7,032,7,464$, 7,896\}.

For the case $v=1,416$, there exists a 4-RGDD of type 4^{10} with $r_{4}=12$ by Theorem 1.4. We add the same point to each block of the first 4-pc, a second point to each block of the second $4-\mathrm{pc}$ and so on. The result is a 5-GDD of type $4^{10} 12^{1}$, which is our master design. We take a 4 -frame of type 3^{5} (Theorem 1.6) as ingredient design. We expand all points of the master design three times and obtain a 4 -frame of type $12^{10} 36^{1}$. We take all $\{3,4\}$-URGDD of type 9^{4} with $r_{4} \in\{1,3,5,7,9\}$ (Lemma 2.2) as ingredient designs. We expand all points of the 4 -frame nine times and obtain a $\{3,4\}$-frame of type $108^{10} 324^{1}$ with $\tilde{r}_{4} \in\{4,6, \ldots, 36\}$ per group of size 108 and $\breve{r}_{4} \in\{12,14, \ldots, 108\}$ per group of size 336 . There exists a $\{3,4\}$-URGDD of type 12^{10} with $r_{4} \in\{0,12,36\}$ by Lemma 4.15. Adjoin 12 infinite points to the frame and fill all groups of size 108 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{120,144, \ldots, 360\} 4$-pcs over all points. We fill each new group of size 12 with a URD $(\{3,4\} ; 12)$, but not the infinite points. These URDs combine to form partial 4pcs over all groups of size 108 with $r_{4}^{0}=1$. Together with the $r_{4} \in\{12,14, \ldots, 108\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{13,15, \ldots, 109\}$ partial 4-pcs, which
miss the group of size 324 and cover all of the points of the groups of size 108. The $\operatorname{URD}(\{3,4\} ; 336)$ (Theorem 1.14) with $r_{4} \in\{1,3, \ldots, 111\}$ is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{13,15, \ldots, 109\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 118 \cdot 12=1,416)$ with $r_{4} \in\{133,135, \ldots, 360+109=469\}$. The assertion follows for this case by Theorems 1.11 and 6.1.
For the case $v=1,848$, there exists a $\{3,4\}$-URGDD of type 84^{22} with $r_{4} \in$ $\{28,30, \ldots, 588\}$ by Lemma 4.23 . We fill all groups with the same $\operatorname{URD}(\{3,4\} ; 84)$ and obtain a $\operatorname{URD}(\{3,4\} ; 1,848)$ with $r_{4} \in\{29,31, \ldots, 615\}$. The assertion for this case follows by Theorem 6.1.

There exist all admissible $\operatorname{URD}(\{3,4\} ; 2,280)$ by Theorem 5.8.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 2,712)$ by Theorem 6.9.
For the case $v=3,144$, there exists a $\{6,12\}$-frame of type $\left(5 ; 6^{1}\right)^{11}\left(11 ; 12^{1}\right)^{1}$ by Lemma 4.44. We take all $\{3,4\}$-URGDD of type 48^{6} with $r_{4} \in\{0,2, \ldots, 72,80\}$ (Lemma 4.42) and 48^{11} with $r_{4} \in\{0,2,4, \ldots, 160\}$ (Lemma 4.42) as ingredient designs. We expand all points of the frame 48 times and obtain a $\{3,4\}$-frame of type $240^{11} 528^{1}$ with $\tilde{r}_{4} \in\{0,2, \ldots, 72,80\}$ per group of size 240 and $r_{4} \in\{0,2, \ldots, 160\}$ per group of size 528 . There exists a $\{3,4\}$-URGDD of type 24^{11} with $r_{4} \in\{0,2, \ldots, 70,80\}$ by Lemma 4.36. Adjoin 24 infinite points to the frame and fill all groups of size 240 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,2, \ldots, 870,880\} 4$-pcs over all points. We fill each new group of size 24 with the same $\operatorname{URD}(\{3,4\} ; 24)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 240 with $r_{4}^{0} \in\{1,3, \ldots, 7\}$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 160\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 167\}$ partial 4-pcs, which miss the group of size 528 and cover all of the points of the groups of size 240.
$\operatorname{A} \operatorname{URD}(\{3,4\} ; 504)$ with $r_{4} \in\{1,3, \ldots, 167\}$ (Theorem 6.7) is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{1,3, \ldots, 167\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 262 \cdot 12=3,144)$ with $r_{4} \in\{1,3, \ldots, 1,047\}$.

There exist all admissible $\operatorname{URD}(\{3,4\} ; 3,576)$ by Theorem 6.1 and Lemma 6.8.
For the case $v=4,008$, there exists a $5-G D D$ of type $16^{5} 8^{1}$ by Theorem 1.2 , which is our master design. We take a 4 -frame of type 3^{5} (Theorem 1.6) as ingredient design. We expand all points of the master design three times and obtain a 4 -frame of type $48^{5} 24^{1}$. We take all $\{3,4\}$-URGDD of type 15^{4} with $r_{4} \in\{1,3, \ldots, 15\}$ (Lemma 2.5) as ingredient designs. We expand all points of the 4 -frame 15 times and obtain a $\{3,4\}$-frame of type $720^{5} 360^{1}$ with $\tilde{r}_{4} \in\{16,18, \ldots, 240\}$ per group of size 720 and $r_{4} \in\{8,10, \ldots, 120\}$ per group of size 360 . There exists a $\{3,4\}$-URGDD of type 48^{16} with $r_{4} \in\{0,2,4, \ldots, 240\}$ by Lemma 4.41. Adjoin 48 infinite points to the frame and fill all groups of size 720 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{80,82, \ldots, 1,200\} 4$-pcs over all points. We fill each new group of size 48 with the same $\operatorname{URD}(\{3,4\} ; 48)$, but not the infinite points. These URDs combine to form partial 4-pcs over all five groups of size 720 with $r_{4}^{0} \in\{1,3, \ldots, 15\}$. Together with the $r_{4} \in\{8,10, \ldots, 120\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{9,11, \ldots, 135\}$ partial 4-pcs partial 4-pcs which miss the group of size 360 and cover all of the points of the groups of size 720 . There exists a $\{3,4\}$-URGDD of type 24^{17} with $r_{4} \in\{16,18, \ldots, 112\}$ by Lemma 4.36. By filling the groups, Theorems 6.1 and 1.13 , we obtain a $\operatorname{URD}(\{3,4\} ; 408)$ with $r_{4} \in\{1,3, \ldots, 119,129,131,133,135\}$, which is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{9,11, \ldots, 119,129,131,133,135\} 4$-pcs.

The result is a $\operatorname{URD}(\{3,4\} ; 324 \cdot 12=4,008)$ with $r_{4} \in\{89,91, \ldots, 1,335\}$. The assertion for this case follows by Theorem 6.1.

There exist all admissible $\operatorname{URD}(\{3,4\} ; 4,440)$ by Theorem 5.8.
There exist all admissible URD $(\{3,4\} ; 4,872)$ by Theorem 6.9.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 5,304)$ by Lemma 6.10.
There exist all admissible URD $(\{3,4\} ; 5,736)$ by Lemma 6.11.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 6,168)$ by Theorem 6.1 and Lemma 6.8.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 6,600)$ by Theorem 5.8.
There exist all admissible $\operatorname{URD}(\{3,4\} ; 7,032)$ by Theorem 6.9.
For the case $v=7,464$, there exists a 4-RGDD of type 8^{13} with $r_{4}^{0}=32$ by Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.5 as ingredient designs. We expand all points of the master design 15 times. We obtain a $\{3,4\}$-URGDD of type 120^{13} with $r_{4} \in\{32,34,36, \ldots, 480\}$, as we fill all parallel classes appropriately. There exists a 5 -GDD of type $40^{5} 4^{1}$ by Theorem 1.2 , which is our master design. We take a 4 -frame of type 3^{5} (Theorem 1.6) as ingredient design. We expand all points of the master design three times and obtain a 4 -frame of type $120^{5} 12^{1}$. We take all $\{3,4\}$-URGDD of type 12^{4} with $r_{4} \in\{0,2, \ldots, 12\}$ (Lemma 2.3) as ingredient designs. We expand all points of the 4 -frame 12 times and obtain a $\{3,4\}$-frame of type (120 . $12)^{5} 144^{1}$ with $\tilde{r}_{4} \in\{0,2, \ldots, 480\}$ per group of size 1,440 and $\breve{r}_{4} \in\{0,2, \ldots, 48\}$ per group of size 144 . We take from above a $\{3,4\}$-URGDD of type 120^{13} with $r_{4} \in$ $\{32,34,36, \ldots, 480\}$. Adjoin 120 infinite points to the frame and fill all groups of size 120 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{160,162,164, \ldots, 2,400\} 4$-pcs over all points.
We fill each new group of size 120 with the same $\operatorname{URD}(\{3,4\} ; 120)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 1,440 with $r_{4}^{0} \in\{1,3, \ldots, 25,33,35,37,39\}$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 48\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 87\}$ partial 4-pcs which miss the group of size 144 and cover all of the points contained in groups of size 1,440. A URD $(\{3,4\} ; 264)$ with $r_{4} \in\{1,3, \ldots, 77,81,83,85,87\}($ next Lemma) is used to fill in the last group together with the infinite points. We thus obtain $\hat{r}_{4} \in\{1,3, \ldots, 77,81,83,85,87\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 622 \cdot 12=7,464)$ with $r_{4} \in\{161,163, \ldots, 2,487\}$. The assertion for this case follows by Theorem 6.1.
For the final case $v=7,896$, there exists a $\{3,4\}$-URGDD of type 84^{94} with $r_{4} \in$ $\{124,126, \ldots, 2,604\}$ by Lemma 4.23 . We fill all groups with the same $\operatorname{URD}(\{3,4\} ; 84)$ and obtain a $\operatorname{URD}(\{3,4\} ; 7,896)$ with $r_{4} \in\{125,127, \ldots, 2,631\}$. The assertion for this case follows by Theorem 6.1.

For the last subsubclass $v \equiv 264(\bmod 432)$, we deal with v congruent $264,696,1,128$, 1,560 , and 1,992 modulo 2160.

Lemma 6.17. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 264(\bmod 2160)$, possibly excepting $v=264, r_{4}=79$.

Proof. There exists a $\{3,4\}$-URGDD of type 24^{11} with $r_{4} \in\{0,2,4, \ldots, 70\}$ by Lemma 4.36. Filling all groups appropriately with the same $\operatorname{URD}(\{3,4\} ; 24)$ results in a $\operatorname{URD}(\{3,4\} ; 264)$ with $r_{4} \in\{1,3, \ldots, 77\}$. We obtain $r_{4} \in\{1,3, \ldots, 77,81,83,85,87\}$ for this design by Theorems 1.11 and 1.13.

There exists a 5-GDD of type $(8 i)^{5} 4^{1}$ for $i \geq 1$ by Theorem 1.2 , which is our master design. We take a 4 -frame of type 3^{5} (Theorem 1.6) as ingredient design. We expand all points of the master design three times and obtain a 4 -frame of type $(24 i)^{5} 12^{1}$.

We take all $\{3,4\}$-URGDD of type 18^{4} with $r_{4} \in\{0,2, \ldots, 18\}$ (Lemma 2.6) as ingredient designs. We expand all points of the 4 -frame 18 times and obtain a $\{3,4\}$-frame of type $(432 i)^{5} 216^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 144 i\}$ per group of size $432 i$ and $r_{4} \in\{0,2, \ldots, 72\}$ per group of size 216 .

There exists a $\{3,4\}$-URGDD of type $48^{9 i+1}$ with $r_{4} \in\{0,2, \ldots, 144 i\}$ for $i \geq 1$ by Lemma 4.41. Adjoin 48 infinite points to the frame and fill all groups of size $432 i$ with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,2,4, \ldots, 720 i\} 4-$ pcs over all points.

We fill each new group of size 48 with the same $\operatorname{URD}(\{3,4\} ; 48)$, but not the infinite points. These URDs combine to form partial 4-pcs over all five groups of size $432 i$ with $r_{4}^{0} \in\{1,3, \ldots, 15\}$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 72\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 87\}$ partial 4-pcs which miss the group of size 216 and cover all of the points of the groups of size $432 i$.
The $\operatorname{URD}(\{3,4\} ; 264)$ with $r_{4} \in\{1,3, \ldots, 77,81,83,85,87\}$ from above is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in$ $\{1,3, \ldots, 77,81,83,85,87\}$ 4-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 2,160 i+264)$ with $r_{4} \in\{1,3, \ldots, 720 i+87\}$ for $i \geq 1$.

Lemma 6.18. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 69(\bmod 720), v \geq$ 2,856.

Proof. There exists a $\{4,6\}$-frame of type $\left(3 ; 4^{1}\right)^{2(2 i-1)}\left(5 ; 6^{1}\right)^{1}$ for $i \geq 4$ and $i \neq 34$ by Lemma 4.43.

We take all $\{3,4\}$-URGDD of type 60^{4} with $r_{4} \in\{0,2, \ldots, 60\}$ (Lemma 2.10) and 60^{6} with $r_{4} \in\{0,2, \ldots, 90,100\}$ (Lemma 4.16) as ingredient designs. We expand all points of the frame 60 times and obtain a $\{3,4\}$-frame of type $180^{2(2 i-1)} 300^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 60\}$ per group of size 180 and $\breve{r}_{4} \in\{0,2, \ldots, 90,100\}$ per group of size 300 .

There exists a $\{3,4\}$-URGDD of type 36^{6} with $r_{4} \in\{0,2, \ldots, 54,60\}$ by Lemma 3.18. Adjoin 36 infinite points to the frame and fill all groups of size 180 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,2,4, \ldots, 120(2 i-1)-6,120(2 i-1)\} 4$-pcs over all points.

We fill each new group of size 36 with the same $\operatorname{URD}(\{3,4\} ; 36)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 180 with $r_{4}^{0} \in\{1,3, \ldots, 11\}$. Together with the $r_{4} \in\{0,2, \ldots, 90,100\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 111\}$ partial 4-pes which miss the group of size 300 and cover all of the points of the groups of size 180.
$\operatorname{A} \operatorname{URD}(\{3,4\} ; 336)$ (Theorem 1.14) with $r_{4} \in\{1,3, \ldots, 111\}$ is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{1,3, \ldots, 111\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 360(2 i-1)+336)$ with $r_{4} \in\{1,3, \ldots, 120(2 i-1)+111\}$ for $i \geq 4$ and $i \neq 34$.
Now the case $i=34$. There exists a 4-RGDD of type 24^{17} by Theorem 1.4. We remove a point and obtain a $\{4,24\}$-frame of type $\left(3 ; 4^{1}\right)^{128}\left(23 ; 24^{1}\right)^{1}$.

We take all $\{3,4\}$-URGDD of type $60^{4}($ Lemma 2.10$)$ with $r_{4} \in\{0,2, \ldots, 60\}$ and 60^{24} with $r_{4} \in\{0,2, \ldots, 460\}$ (Lemma 4.16) as ingredient designs. We expand all points of the
frame 60 times and obtain a $\{3,4\}$-frame of type $180^{128} 1,380^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 60\}$ per group of size 180 and $\breve{r}_{4} \in\{0,2, \ldots, 460\}$ per group of size 1,380 .

There exists a $\{3,4\}$-URGDD of type 36^{6} with $r_{4} \in\{0,2, \ldots, 54,60\}$ by Lemma 3.18. Adjoin 36 infinite points to the frame and fill all groups of size 180 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,2,4, \ldots, 60$ -$128-6,60 \cdot 128\} 4$-pcs over all points.

We fill each new group of size 36 with the same $\operatorname{URD}(\{3,4\} ; 36)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 180 with $r_{4}^{0} \in\{1,3, \ldots, 11\}$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 460\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 471\}$ partial 4-pcs which miss the group of size 1,380 and cover all of the points of the groups of size 180.

A $\operatorname{URD}(\{3,4\} ; 1,416)$ (Lemma 6.14) with $r_{4} \in\{1,3, \ldots, 457,465,467,469,471\}$ is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{1,3, \ldots, 457,465,467,469,471\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 180 \cdot 128+$ $1,416=180 \cdot 134+336)$ with $r_{4} \in\{1,3, \ldots, 8,151\}$.

Corollary 6.19. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 696(\bmod 2,160)$.
Proof. There exist all admissible $\operatorname{URD}(\{3,4\} ; 696)$ by Lemma 6.11. The assertion follows by Lemma 6.18.

Lemma 6.20. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 1,128(\bmod 2160)$, $v \geq 5,448$.

Proof. There exists a 5-GDD of type $(8 i)^{5} 20^{1}$ for $i \geq 2$ by Theorem 1.2, which is our master design. We take a 4 -frame of type 3^{5} (Theorem 1.6) as ingredient design. We expand all points of the master design three times and obtain a 4-frame of type $(24 i)^{5} 60^{1}$.

We take all $\{3,4\}$-URGDD of type 18^{4} with $r_{4} \in\{0,2, \ldots, 18\}$ (Lemma 2.6) as ingredient designs. We expand all points of the 4 -frame 18 times and obtain a $\{3,4\}$-frame of type $(432 i)^{5} 1,080^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 144 i\}$ per group of size $432 i$ and $r_{4} \in\{0,2, \ldots, 360\}$ per group of size 1,080 .

There exists a $\{3,4\}$-URGDD of type $48^{9 i+1}$ with $r_{4} \in\{0,2, \ldots, 144 i\}$ by Lemma 4.41. Adjoin 48 infinite points to the frame and fill all groups of size $432 i$ with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,2,4, \ldots, 720 i\}$ 4-pcs over all points.

We fill each new group of size 48 with the same $\operatorname{URD}(\{3,4\} ; 48)$, but not the infinite points. These URDs combine to form partial 4-pcs over all five groups of size $432 i$ with $r_{4}^{0} \in\{1,3, \ldots, 15\}$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 360\}$ partial 4-pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 375\}$ partial 4 -pcs, which miss the group of size 1,080 and cover all of the points of the groups of size $432 i$.
$\operatorname{A} \operatorname{URD}(\{3,4\} ; 1,128)$ with $r_{4} \in\{1,3, \ldots, 9,369,371,373,375\}$ (Theorems 1.12 and 1.13) is used to fill in the last group together with the infinite points. We thus obtain $\hat{r}_{4} \in\{1,3, \ldots, 9,369,371,373,375\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 2,160 i+1,128)$ with $r_{4} \in\{1,3, \ldots, 720 i+375\}$ for $i \geq 2$.

Corollary 6.21. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 1,560(\bmod 2160)$.

Proof. The assertion follows by Theorem 5.8.
Corollary 6.22. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 1,992(\bmod 2160)$.
Proof. The assertion follows by Theorem 6.9 with $i \equiv 5(\bmod 6)$.
Theorem 6.23. There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 264(\bmod 432)$, possibly excepting $v \in\{264,1,128,3,288\}, r_{4}=(v / 3)-9$.

Proof. Lemma 6.17, Corollary 6.19, Lemma 6.20, Corollary 6.21, and Corollary 6.22 cover every case except $v \in\{1,128,3,288\}$.

For the case $v=1,128$, there exists a 4-RGDD of type 8^{4} by Theorem 1.4. We remove a point and obtain a $\{4,8\}$-frame of type $\left(3 ; 4^{1}\right)^{8}\left(7 ; 8^{1}\right)^{1}$.
We take all $\{3,4\}$-URGDD of type 36^{4} with $r_{4} \in\{0,2, \ldots, 36\}$ (Lemma 3.18) and 36^{8} with $r_{4} \in\{0,2, \ldots, 84\}$ (Lemma 3.23) as ingredient designs. We expand all points of the frame 36 times and obtain a $\{3,4\}$-frame of type $108^{8} 252^{1}$ with $\tilde{r}_{4} \in\{0,2,4, \ldots, 36\}$ per group of size 108 and $\breve{r}_{4} \in\{0,2, \ldots, 84\}$ per group of size 252 . There exists a $\{3,4\}$-URGDD of type 12^{10} with $r_{4} \in\{0,12,36\}$ by Lemma 4.15 . Adjoin 12 infinite points to the frame and fill all groups of size 108 with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,12,24, \ldots, 264,288\}$ 4 -pcs over all points. We fill each new group of size 12 with a $\operatorname{URD}(\{3,4\} ; 12)$, but not the infinite points. These URDs combine to form partial 4-pcs over all groups of size 108 with $r_{4}^{0}=1$. Together with the $\breve{r}_{4} \in\{0,2, \ldots, 84\}$ partial 4 -pcs of the last group, we obtain $\tilde{r}_{4}^{0} \in\{1,3,5, \ldots, 85\}$ partial 4-pcs which miss the group of size 252 and cover all of the points contained in groups of size 108. A $\operatorname{URD}(\{3,4\} ; 264)$ (Lemma 6.17) with $r_{4} \in\{1,3, \ldots, 77,81,83,85,87\}$ is used to fill in the last group together with the infinite points. We thus obtain $\hat{r}_{4} \in\{1,3, \ldots, 77,81,83,85\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 1,128)$ with $r_{4} \in\{1,3, \ldots, 288+77,288+81,288+83,288+85\}$. The assertion for this case follows by Theorem 1.11.

For the case $v=3,288$, there exists a $\{3,4\}$-frame of type 252^{13} with $\tilde{r}_{4} \in$ $\{0,2,4, \ldots, 84\}$ per group of the frame by Lemma 4.38. There exists a $\{3,4\}$-URGDD of type 12^{21+1} with $r_{4} \in\{0,2,4, \ldots, 56,84\}$ by Lemma 4.26 . Adjoin 12 infinite points to the frame and fill 12 groups with one of the above URGDDs, where the infinite points form a group. We thus obtain $\hat{r}_{4} \in\{0,2,4, \ldots, 980,1,008\} 4$-pcs. We fill each new group of size 12 with a $\operatorname{URD}(\{3,4\} ; 12)$, but not the infinite points. $\operatorname{A~} \operatorname{URD}(\{3,4\} ; 264)$ (Lemma 6.17) with $r_{4} \in\{1,3, \ldots, 77,81,83,85,87\}$ is used to fill in the last group together with the infinite points. We thus obtain $r_{4} \in\{1,3,5, \ldots, 85\} \cap\{1,3, \ldots, 77,81,83,85,87\}=$ $\{1,3, \ldots, 77,81,83,85\} 4$-pcs. The result is a $\operatorname{URD}(\{3,4\} ; 12 \cdot 252+264=3,288)$ with $r_{4} \in\{1,3,5, \ldots, 1,085,1,089,1,091,1,093\}$. We apply Theorem 1.11 for the greatest r_{4}.

We summarize the results of this section.
Theorem 6.24. \quad There exist all admissible $\operatorname{URD}(\{3,4\} ; v)$ for $v \equiv 24(\bmod 48)$, possibly excepting

```
\(v=120\) and \(r_{4} \in\{(v / 3)-13,(v / 3)-11,(v / 3)-9\} ;\)
\(v=264\) and \(r_{4}=(v / 3)-9\);
\(v=408\) and \(r_{4} \in\{(v / 3)-15,(v / 3)-13,(v / 3)-11,(v / 3)-9\} ;\)
```

$v=456$ and $r_{4} \in\{(v / 3)-11,(v / 3)-9\} ;$
$v=552$ and $r_{4} \in\{(v / 3)-13,(v / 3)-11,(v / 3)-9\} ;$
$v=984$ and $r_{4} \in\{(v / 3)-13,(v / 3)-11,(v / 3)-9\} ;$
$v=1,128$ and $r_{4}=(v / 3)-9$;
$v=3,288$ and $r_{4}=(v / 3)-9$.

ACKNOWLEDGMENT

The author thanks both referees for their careful reading and many valuable comments and suggestions.

REFERENCES

[1] R. J. R. Abel, G. Ge, M. Greig, and A. C. H. Ling, Further results on ($\left.v,\left\{5, w^{*}\right\}, 1\right)-\mathrm{PBDs}$, Discrete Math 309 (2009), 2323-2339.
[2] R. J. R. Abel, C. J. Colbourn, and J. H. Dinitz, "Mutually orthogonal Latin squares (MOLS)," in The CRC Handbook of Combinatorial Designs, 2nd edition, C. J. Colbourn and J. H. Dinitz (Editors), CRC Press, Boca Raton, FL, 2006, pp. 160-193.
[3] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, 2nd edition, Cambridge University Press, Cambridge, 1999.
[4] C. J. Colbourn and J. H. Dinitz (Editors), The CRC Handbook of Combinatorial Designs, 2nd edition, CRC Press, Boca Raton, FL, 2006.
[5] P. Danziger, Uniform restricted resolvable designs with $\mathrm{r}=3$, Ars Combin 46 (1997), 161-176.
[6] P. Danziger and E. Mendelsohn, Uniformly resolvable designs, JCMCC 21 (1996), 65-83.
[7] J. H. Dinitz, A. C. H. Ling, and P. Danziger, Maximum uniformly resolvable designs with block sizes 2 and 4, Discrete Math 309 (2009), 4716-4721.
[8] G. Ge, Uniform frames with block size four and index one or three, J Combin Des 9 (2001), 28-39.
[9] G. Ge, Resolvable group divisible designs with block size four, Discrete Math 243 (2002), 109-119.
[10] G. Ge, Resolvable group divisible designs with block size four and index three, Discrete Math 306 (2006), 52-65.
[11] G. Ge and C. W. H. Lam, Resolvable group divisible designs with block size four and group size six, Discrete Math 268 (2003), 139-151.
[12] G. Ge and A. C. H. Ling, A survey on resolvable group divisible designs with block size four, Discrete Math 279 (2004), 225-245.
[13] G. Ge and A.C. H. Ling, Asymptotic results on the existence of 4-RGDDs and uniform 5-GDDs, J Combin Des 13 (2005), 222-237.
[14] G. Ge and A. C. H. Ling, Some more 5-GDDs and optimal (v, 5, 1)-packings, J Combin Designs 12 (2004), 132-141.
[15] G. Ge and A. C. H. Ling, Some new uniform frames with block size four and index one or three, J Combin Des 12 (2004), 112-122.
[16] G. Ge, C. W. H. Lam, A. C. H. Ling, and H. Shen, Resolvable maximum packings with quadruples, Des Codes Cryptogr 35 (2005), 287-302.
[17] G. Ge and R. S. Rees, On group-divisible designs with block size four and group-type $g^{u} m^{1}$, Des. Codes Cryptogr. 27 (2002) 5-24.
[18] H. Hanani, D. K. Ray-Chauduri, and R. M. Wilson, On resolvable designs, Discrete Math 3 (1972), 343-357.
[19] E. R. Lamken, W. H. Mills, and R. S. Rees, Resolvable minimum coverings with quadruples, J Combin Des 6 (1998), 431-450.
[20] R. S. Rees, Uniformly resolvable pairwise balanced designs with blocksizes two and three, J Combin Theory Ser A 45 (1987), 207-225.
[21] R. S. Rees, Two new direct product-type constructions for resolvable group-divisible designs, J Combin Des 1 (1993), 15-26.
[22] R. S. Rees, Group-divisible designs with block size k having $\mathrm{k}+1$ groups for $\mathrm{k}=4,5$, J Combin Des 8 (2000), 363-386.
[23] R. S. Rees and D. R. Stinson, Frames with block size four, Can J Math 44 (1992), 1030-1049.
[24] E. Schuster, Uniformly resolvable designs with index one and block sizes three and four-with three or five parallel classes of block size four, Discrete Math 309 (2009), 2452-2465.
[25] E. Schuster, Uniformly resolvable designs with index one, block sizes three and five and up to five parallel classes with blocks of size five, Discrete Math 309 (2009), 4435-4442.
[26] E. Schuster, Group divisible designs with block size four and group type $g^{u} m^{1}$ whereas g is a multiple of 8, Discrete Math 310 (2010), 2258-2270.
[27] E. Schuster and G. Ge, On uniformly resolvable designs with block sizes 3 and 4, Des Codes Cryptogr 57 (2010), 57-69.
[28] H. Shen, "Constructions and uses of labeled resolvable designs," in Combinatorial Designs and Applications, W. D. Wallis (Editor), Marcel Dekker, New York, 1990, pp. 97-107.
[29] H. Shen, On the existence of nearly Kirkman systems, Ann Discrete Math 52 (1992), 511-518.
[30] H. Shen and M. Wang, Existence of labeled resolvable block designs, Bull Belg Math Soc 5 (1998), 427-439.
[31] H. Shen and J. Shen, Existence of resolvable group divisible designs with block size four I, Discrete Math 254 (2002), 513-525.
[32] X. Sun and G. Ge, Resolvable group divisible designs with block size four and general index, Discrete Math 309 (2009), 2982-2989.
[33] X. Zhang and G. Ge, On the existence of partitionable skew room frames, Discrete Math 307 (2007), 2786-2807.
[34] www.people.imise.uni-leipzig.de/ernst.schuster
[35] M. Greig and R. J. R. Abel, Resolvable balanced incomplete block designs with block size 8, Des Codes Cryptogr 11 (1997), 123-140.

