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Abstract: A uniformly resolvable design (URD) is a resolvable design in which each parallel
class contains blocks of only one block size k, such a class is denoted k-pc and for a given k
the number of k-pcs is denoted rk. In this paper, we consider the case of block sizes 3 and 4
(both existent). We use v to denote the number of points, in this case the necessary conditions
imply that v ≡ 0 (mod 12). We prove that all admissible URDs with v < 200 points exist, with
the possible exceptions of 13 values of r4 over all permissible v. We obtain a URD({3, 4}; 276)
with r4 = 9 by direct construction use it to and complete the construction of all URD({3, 4}; v)
with r4 = 9. We prove that all admissible URDs for v ≡ 36 (mod 144), v ≡ 0 (mod 60), v ≡ 36
(mod 108), and v ≡ 24 (mod 48) exist, with a few possible exceptions. Recently, the existence
of URDs for all admissible parameter sets with v ≡ 0 (mod 48) was settled, this together with
the latter result gives the existence all admissible URDs for v ≡ 0 (mod 24), with a few possible
exceptions. C© 2013 Wiley Periodicals, Inc. J. Combin. Designs 21: 481–523, 2013
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1. INTRODUCTION

Let v and λ be positive integers, let K and M be two sets of positive integers. A group
divisible design, denoted by GDDλ(K, M; v), is a triple (X, G, B), where X is a set with
v elements (called points), G is a set of subsets (called groups) of X , G partitions X , and
B is a set of subsets (called blocks) of X such that

1. |B| ∈ K for each B ∈ B,

2. |G| ∈ M for each G ∈ G,

3. |B ∩ G| ≤ 1 for each B ∈ B and each G ∈ G,

4. Each pair of elements of X from distinct groups is contained in exactly λ blocks.
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The notation is similar to [3,4]. If λ = 1, the index λ is omitted. If K = {k}, respectively,
M = {m}, then the GDDλ(K,M; v) is simply denoted by GDDλ(k, M; v), respectively,
GDDλ(K, m; v), which may also be specified in “exponential” form as K-GDDλ of type
mv/m. A GDDλ(K, 1; v) is called a pairwise balanced design and denoted by PBDλ(K; v).

Theorem 1.1 ([17, 22]). There exists a 4-GDDof type g4m1 with m > 0 if and only
if g ≡ m ≡ 0 (mod3) and 0 < m ≤ 3g/2.

Theorem 1.2 ([1, 14, 22]). There exists a 5-GDD of type g5m1 with m > 0 if g ≡
m ≡ 0 (mod4) and 0 < m ≤ 4g/3, with the possible exceptions of (g, m) = (12, 4) and
(12, 8).

A transversal design TDλ(k, g) is equivalent to a GDDλ(k, g; kg). That means, in a
TDλ(k, g), each block contains a point from each group. If λ = 1, the index λ is omitted.

Theorem 1.3 ([2]). A TD(k, g) exists in the following cases:

1. k = 6 and g ≥ 5 and g /∈ {6, 10, 14, 18, 22};
2. k = 7 and g ≥ 7 and g /∈ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60};
3. A TD(p + 1, p) exists, where p is a prime power.

In a GDDλ(K, M; v) with (X, G, B), a parallel class is a set of blocks, which partitions
X. If B can be partitioned into parallel classes, then the GDDλ(K,M; v) is said to be
resolvable and denoted by RGDDλ(K, M; v). Analogously, a resolvable PBDλ(K; v) is
denoted by RPBDλ(K; v). A parallel class is said to be uniform if it contains blocks of
only one size k (k-pc). If all parallel classes of an RPBDλ(K; v) are uniform, the design
is said to be uniformly resolvable. Here, a uniformly resolvable design RPBDλ(K; v) is
denoted by URDλ(K; v). If λ = 1, the index λ is omitted. In a URDλ(K; v), the number
of resolution classes with blocks of size k is denoted rk , k ∈ K . Uniformly resolvable
designs with block sizes 3 and 4 mean here URD({3, 4}; v) with r3 > 0 and r4 > 0.

The following theorem about RGDDs will be applied later.

Theorem 1.4 ([4, 9–13, 16, 18, 23, 27, 29, 31, 32]). The necessary conditions for the
existence of a k-RGDD of type hn, RGDD(k, h; hn), namely, n ≥ k, hn ≡ 0 (modk), and
h(n − 1) ≡ 0 (modk − 1), are also sufficient for

k = 2;
k = 3, except for (h, n) ∈ {(2, 3), (2, 6), (6, 3)}; and for
k = 4, except for (h, n) ∈ {(2, 4), (2, 10), (3, 4), (6, 4)} and possibly excepting:

1. h ≡ 2, 10 (mod12) :
h = 2 and n ∈ {34, 46, 52, 70, 82, 94, 100, 118, 130, 178, 184, 202, 214, 238,

250, 334};
h = 10 and n ∈ {4, 34, 52, 94};
h ∈ [14, 454] ∪ {478, 502, 514, 526, 614, 626, 686} and n ∈ {10, 70, 82}.

2. h ≡ 6(mod12) : h = 6 and n ∈ {6, 68}; h = 18 and n ∈ {18, 38, 62}.
3. h ≡ 9(mod12) : h = 9 and n = 44.
4. h ≡ 0 (mod12) : h = 24 and n = 23; h = 36 and n ∈ {11, 14, 15, 18, 23}.

A resolvable transversal design RTDλ(k, g) is equivalent to an RGDDλ(k, g; kg). That
means, each block in an RTDλ(k, g) contains a point from each group. A K-frame is a
GDD (X, G, B) with index unity, in which the collection of blocks B can be partitioned
into holey parallel classes each of which partitions X \G for some G ∈ G. We use the
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usual exponential notation for the types of GDDs and frames. Thus, a GDD or a frame
of type 1i2j . . . is one in which there are i groups of size 1, j groups of size 2, and
so on. A K-frame is called uniform if each partial parallel class is of only one block
size. It is called completely uniform if for each hole G the resolution classes which
partition X \G are all of one block size. We use mostly K = {3, 4}. A {3, 4}-frame of
type (g; 3n1 4n2 )u(m; 3n3 4n4 )1 has u groups of size g. Each group of size g has n1 holey
pcs of block size 3 and n2 holey pcs of block size 4. The only group of size m has n3

holey pcs of block size 3 and n4 holey pcs of block size 4.

Theorem 1.5 ([23]). For k = 2 and k = 3, there exists a k-frame of type hu if and
only if u ≥ k + 1, h ≡ 0 (mod k − 1), and h · (u − 1) ≡ 0 (modk).

Theorem 1.6 ([8,13,15,16,19,23,33]). There exists a 4-frame of type hu if and only
if u ≥ 5, h ≡ 0 (mod 3) and h (u − 1) ≡ 0 (mod 4), except possibly where

1. h = 36 and u = 12;
2. h ≡ 6(mod12):

h = 6 and u ∈ {7, 23, 27, 35, 39, 47};
h = 18 and u ∈ {15, 23, 27};
h ∈ {30} ∪ [66, 2, 190] and u ∈ {7, 23, 27, 39, 47};
h ∈ {42, 54}∪ [2,202, 11,238] and u ∈ {23, 27}.

We will also use incomplete group divisible designs (IGDDs). An IGDD with block
sizes from a set K and index unity is a quadruple (X, G, H, B), which meets the
following conditions:

1. G = {G1,G2, . . . ,Gn} is a partition of the set X of points into subsets called groups,
2. H is a subset of X called the hole,
3. B is a collection of subsets of X with cardinalities fromK , called blocks, so that a

group and a block contain at most one common point,
4. every pair of points from distinct groups is either in H or occurs in a unique block

but not both.

This design is denoted by IGDD(K,M; v) of type T, where M =
{|G1|, |G2|, . . . , |Gn|} and T is the multiset {(|Gi |, |Gi ∩ H |) : 1 ≤ i ≤ n}. Sometimes
“exponential” notation is used to describe the type. An IGDD(K,M; v) of type T is
said to be uniformly resolvable and denoted by IUGDD(K,M; v) of type T if blocks
can be partitioned into uniform parallel classes and partial uniform parallel classes, the
latter partitioning X\H. The numbers of uniform parallel classes, partial uniform parallel
classes with blocks of size kare denoted by rk , r◦

k , respectively. If |Gi | = 1 for 1 ≤ i ≤ n,
then the IUGDD is denoted incomplete uniformly resolvable design IURD(K; v) with a
hole H .

Some known results about URDs are summarized below. Rees [20] introduced URDs
and showed:

Theorem 1.7 ([20]). There exists a URD({2, 3}; v) with r2, r3 > 0 if and only if

1. v ≡ 0 (mod6);
2. r2 = v − 1 − 2r3(r3 = v−1−r2

2 );
3. 1 ≤ r3 ≤ v

2 − 1;

with the two exceptions (v, r3) = (6, 2), (12, 5).
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Recently, almost all URDs with K = {2, 4} were constructed in [7] and slightly
improved in [27] as follows:

Theorem 1.8. There exists a URD({2, 4}; v) with r2, r4 > 0 if and only if

1. v ≡ 0 (mod4);
2. r2 = v − 1 − 3r4 (r4 = v−1−r2

3 );

with two exceptions (v, r2) = (8, 1), (20, 1) and possibly excepting:
(v, r2) = (2n, 1), n ∈ {52, 100, 184};
(v, r2) = (2n, r2), n ∈ {34, 46, 70, 82, 94, 118, 130, 178, 202, 214, 238, 250, 334}, r2

admissible;
(v, r2) = (12n, 2), n ∈ {2, 7, 9, 10, 11, 13, 14, 17, 19, 22, 31, 34, 38, 43, 46, 47, 82}.

Theorem 1.9 ([6]). The necessary conditions for the existence of a URD({3, 4}; v)
with r3, r4 > 0 are

� v ≡ 0 (mod12);
� r4 is odd;
� if rk > 1, then v ≥ k2; and
� r4 = v−1−2r3

3 (r3 = v−1−3r4
2 ).

The fourth condition means that if r3 is given, then r4 is determined, and vice versa. It
also implies that r3 ≤ (v/2) − 2 and r4 ≤ (v/3) − 1.

Remark. r3 ≡ 1(mod3).

Proof. Because r4 is odd, insert 2i + 1 for r4 in the last equation of Theorem 1.9; this
gives r3 = v

2 − 3i − 2 ≡ −2 ≡ 1(mod3). �

We will now summarize some known results of URDs with block sizes 3 and 4. The
next two theorems are special cases of Theorem 1.4. We take the groups as an additional
parallel class to get the URDs.

Theorem 1.10 ([25]). There exist an RGDD(3, 4; v) and equivalently a
URD({3, 4}; v) with r4 = 1 if and only if v ≡ 0 (mod12).

Theorem 1.11 ([21, 23, 29, 31]). There exist an RGDD(4, 3; v) and equivalently a
URD({3, 4}; v) with r3 = 1 if and only if v ≡ 0 (mod12), v ≥ 24.

Theorem 1.12 ([5,24,27]). There exists a URD({3, 4}; v) with r4 = 3, 5, or 7 if and
only if v ≡ 0 (mod12), except when v = 12. There exists a URD({3, 4}; v) with r4 = 9
if and only if v ≡ 0 (mod12) except v = 12, 24 and except possibly when v = 276.

There exist also results for small r3.

Theorem 1.13 ([27]). There exists a URD({3, 4}; v) with r3 = 4 if and only if v ≡
0 (mod12). There exists a URD({3, 4}; v) with r3 = 7 if and only if v ≡ 0 (mod12),
except when v = 12, and possibly excepting the following 11 values: v ∈ {72, 84,

108, 132, 156, 204, 228, 276, 348, 372, 444}.
There exists a URD({3, 4}; v) with r3 = 10 if and only if v ≡ 0 (mod12),

except when v = 12, and possibly excepting the following 12 values: v ∈ {60, 72, 108,

132, 156, 204, 228, 276, 300, 348, 372, 492}.
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The main result in [27] is as follows:

Theorem 1.14. For v ≡ 0 (mod 48), all admissible URD({3, 4}; v) exist.

Further, the following result will be applied later.

Lemma 1.15 ([27]). There exists a uniformly resolvable{3,4}-RGDD of type 124 with
r4 ∈ {0, 2, 4, 6, 8, 12} (and r3 ∈ {18, 15, 12, 9, 6, 0}).

There is also a result for K = {3, 5}.
Theorem 1.16 ([25–27]). There exists a URD({3, 5}; v) with r5 = 2, 3, 4, 5 if and
only if v ≡ 15(mod30) except v = 15.

We use the concept of labeled resolvable designs to get direct constructions for resolv-
able designs. This concept was introduced by Shen [28, 30, 31].

Let (X, B) be a (UR)GDDλ(K,M; v) where X = {a1, a2, . . . , av} is totally ordered
with ordering a1 < a2 < · · · < av . For each block B = {x1, x2, . . . , xk}, k ∈ K , we sup-
pose that x1 < x2 < · · · < xk. Let Zλ be the group of residues modulo λ.

Let ϕ : B → Z
(k
2

)

λ be a mapping where for each B = {x1, x2, . . . , xk} ∈ B, k ∈ K ,

ϕ(B) = (ϕ(x1, x2), . . . , ϕ(x1, xk), ϕ(x2, x3), . . . , ϕ(x2, xk), ϕ(x3, x4), . . . , ϕ(xk−1, xk)),

ϕ(xi, xj ) ∈ Zλ for 1 ≤ i < j ≤ k.

A (UR)GDDλ(K,M; v) is said to be a labeled (uniform resolvable) group divisible
design, denoted by L(U)GDDλ(K,M; v), if there exists a mapping ϕ such that:

1. For each pair{x, y} ⊂ X with x < y, contained in the blocks B1, B2, . . . , Bλ, then
ϕi(x, y) ≡ ϕj (x, y) if and only if i = j where the subscripts i and j denote the
blocks to which the pair belongs, for 1 ≤ i, j ≤ λ; and

2. For each block B = {x1, x2, . . . , xk}, k ∈ K , ϕ(xr, xs) + ϕ(xs, xt ) ≡ ϕ(xr, xt )(mod
λ), for 1 ≤ r < s < t ≤ k.

The blocks will be denoted in the following form:

(x1 x2 . . . xk; ϕ(x1, x2) . . . ϕ(x1, xk) ϕ(x2, x3) . . . ϕ(x2, xk) ϕ(x3, x4) . . . ϕ(xk−1, xk)),

k ∈ K.

The above definition was first given in [24] and is a little bit more general than the
definition by Shen [31] with K = {k} or Shen and Wang [30] for transversal designs. A
special case of type 1v , a labeled URDλ(K; v), is denoted by LURDλ(K; v). A labeled
K-frame of type T and index λ is denoted by K−LFλ of type T .

The main application of the labeled designs is to blow up the point set of a given design
with the following theorem (Shen [16]) here extended for labeled (uniform resolvable)
pairwise balanced designs.

Theorem 1.17 ([16,24]). If there exists an L(U )GDDλ(K,M; v) (with rL
k classes of

size k, for each k ∈ K), then there exists a (U )GDD(K, λM; λ v), where λM = {λgi |gi ∈
M} (with rk = rL

k classes of size k, for each k ∈ K) . If there exists a uniform frame K-LFλ

of type T , then there exists a uniform K-frame of type λT , where λT = {λgi |gi ∈ T }.
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A special case for URDs is shown in the following.

Corollary 1.18. If there exists an LURDλ(K; v) with rL
k classes of size k, for each

k ∈ K , then there exists a URD(K ∪ {λ}; λ v) with rk = rL
k when k �= λ, and rλ = rL

λ + 1,
where we take rL

λ = 0 if λ /∈ K .

A K-uniform semiframe of type gu and index λ is a K-GDDλ of type gu (X, G, B), in
which the collection of blocks B can be written as a disjoint union B = P ∪ F, where F
is partitioned into uniform parallel classes of X and P is partitioned into uniform partial
parallel classes, where each uniform partial parallel class is a partition of X/G for some
G ∈ G. The number of partial classes per group in a frame or semiframe of size k will
be indicated by a tilde, r̃k . A semiframe is called perfectly uniform if there are two block
sizes and P are all of one size and F are all of the other. A labeled (perfectly) uniform
semiframe is a semiframe with a labeling on the blocks as above. It is worth noting that,
in general, a frame or semiframe may have different numbers of classes of each size
missing different groups, we exploit this fact in many of our constructions.

Analogously to Theorem 1.17, we obtain.

Theorem 1.19. If there exists a labeled (perfectly) uniform semiframe K-LSFλ of type
T , then there exists a (perfectly) uniform K-semiframe of type λT , where λT = {λgi |gi ∈
T }.

In Section 2, some small {3, 4}-URGDDs are directly constructed. All URDs with
v < 200 point are examined in Section 3. Required {3, 4}-URGDDs and {3, 4}-frames
are contained in Section 4. The most important results of Section 5 are that there exist all
admissible URDs for v ≡ 0 (mod 60) for v > 120 and v ≡ 36 (mod 108). In Section 6,
we consider the case where v ≡ 24 (mod 48). We show that all URDs with v ≡ 24 (mod
48) exist with a few possible exceptions.

2. DIRECT CONSTRUCTIONS

The following desired designs were found computationally.

Lemma 2.1. There exists a uniformly resolvable {3, 4} − URGDD of type 64 with
r4 ∈ {0, 2, 4}.
Proof. There exists a 3-RGDD of type 64 by Theorem 1.4. Let

G = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}}.
A uniformly resolvable {3,4} − LRGDD2 of type 34 with r3 = 6 and r4 = 2; each row

forms a parallel class:

(6 7 12; 1 1 0), (2 8 11; 0 0 0), (1 5 9; 1 0 1), (3 4 10; 0 1 1),

(2 6 8; 1 1 0), (4 9 10; 0 0 0), (1 5 11; 0 1 1), (3 7 12; 1 0 1),

(1 6 11; 0 0 0), (2 4 7; 0 0 0), (3 9 12; 0 1 1), (5 8 10; 1 0 1),

(4 9 11; 1 1 0), (2 5 12; 1 1 0), (3 6 8; 0 1 1), (1 7 10; 1 0 1),

(5 8 12; 0 1 1), (1 4 7; 1 0 1), (3 6 10; 1 0 1), (2 9 11; 0 1 1),

(2 4 12; 1 0 1), (6 7 11; 0 1 1), (1 8 10; 1 1 0), (3 5 9; 1 1 0),
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(2 5 7 10; 0 1 1 1 1 0), (1 6 9 12; 1 1 1 0 0 0), (3 4 8 11; 1 0 1 1 0 1),

(2 6 9 10; 0 1 0 1 0 1), (1 4 8 12; 0 0 0 0 0 0), (3 5 7 11; 0 0 0 0 0 0).

A uniformly resolvable {3,4} − LRGDD2 of type 34 with r3 = 3 and r4 = 4; each row
forms a parallel class:

(1 7 10; 0 1 1), (3 6 9; 1 1 0), (2 5 12; 1 1 0), (4 8 11; 0 0 0),

(5 9 10; 0 0 0), (2 4 7; 1 1 0), (1 6 11; 0 1 1), (3 8 12; 1 0 1),

(2 9 11; 0 1 1), (1 5 8; 1 0 1), (6 7 12; 0 0 0), (3 4 10; 1 1 0),

(1 4 9 11; 1 0 0 1 1 0), (2 6 8 12; 1 0 0 1 1 0), (3 5 7 10; 1 0 0 1 1 0),

(2 5 7 11; 0 0 0 0 0 0), (3 4 9 12; 0 0 1 0 1 1), (1 6 8 10; 1 1 0 0 1 1),

(2 6 9 10; 0 1 0 1 0 1), (1 4 7 12; 0 1 0 1 0 1), (3 5 8 11; 0 0 1 0 1 1),

(1 5 9 12; 0 1 1 1 1 0), (2 4 8 10; 0 1 1 1 1 0), (3 6 7 11; 0 1 0 1 0 1).

The assertion follows by Theorem 1.17. �

Lemma 2.2. There exist uniformly resolvable

{3,4}-URGDD of type 94 with r3 = 12 and r4 = 1,

{3,4}-URGDD of type 94 with r3 = 9 and r4 = 3,

{3,4}-URGDD of type 94 with r3 = 6 and r4 = 5,

{3,4}-URGDD of type 94 with r3 = 3 and r4 = 7, and

4-RGDD of type 94 with (r3 = 0 and) r4 = 9.

Proof. The 4-RGDD of type 94 exists by Theorem 1.4. Let

G = {{1, 2, 3} , {4, 5, 6} , {7, 8, 9} , {10, 11, 12}} .

A uniformly resolvable {3,4}-LRGDD3 of type 34 with r3 = 12 and r4 = 1; each row
forms a parallel class:

(1 4 10; 1 1 0), (5 8 12; 0 1 1), (3 7 11; 2 1 2), (2 6 9; 2 1 2),

(5 9 10; 1 0 2), (2 8 11; 1 2 1), (3 6 12; 1 2 1), (1 4 7; 0 0 0),

(2 7 12; 1 0 2), (3 4 10; 1 0 2), (6 8 11; 2 2 0), (1 5 9; 0 2 2),

(6 9 12; 0 2 2), (1 8 10; 1 2 1), (2 4 11; 0 0 0), (3 5 7; 1 1 0),

(3 5 11; 2 2 0), (2 4 8; 1 2 1), (1 7 12; 2 2 0), (6 9 10; 1 1 0),

(5 7 12; 2 0 1), (2 4 9; 2 2 0), (1 6 11; 1 1 0), (3 8 10; 1 1 0),

(4 7 10; 2 1 2), (1 5 8; 2 0 1), (3 9 11; 1 0 2), (2 6 12; 1 1 0),

(1 6 11; 2 0 1), (2 7 10; 2 0 1), (4 8 12; 0 0 0), (3 5 9; 0 0 0),

(1 5 10; 1 0 2), (4 7 11; 1 1 0), (2 6 8; 0 0 0), (3 9 12; 2 0 1),

(1 9 11; 1 2 1), (3 4 8; 0 2 2), (2 5 12; 0 2 2), (6 7 10; 2 2 0),

(1 8 12; 2 1 2), (3 6 7; 0 0 0), (2 5 10; 1 2 1), (4 9 11; 2 2 0),

(3 4 12; 2 1 2), (5 8 11; 2 1 2), (2 9 10; 0 1 1), (1 6 7; 0 1 1),

(2 5 7 11; 2 0 1 1 2 1), (3 6 8 10; 2 0 2 1 0 2), (1 4 9 12; 2 0 0 1 1 0).
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A uniformly resolvable {3,4}-LRGDD3 of type 34 with r3 = 9 and r4 = 3; each row
forms a parallel class:

(6 8 11; 0 2 2), (2 7 10; 1 1 0), (1 5 12; 2 2 0), (3 4 9; 2 2 0),

(2 5 9; 2 1 2), (4 8 11; 0 0 0), (1 6 10; 0 0 0), (3 7 12; 1 2 1),

(1 4 11; 1 0 2), (5 8 10; 0 1 1), (3 9 12; 0 1 1), (2 6 7; 2 2 0),

(2 6 12; 1 2 1), (3 5 7; 0 2 2), (1 8 10; 2 2 0), (4 9 11; 1 1 0),

(6 9 12; 0 2 2), (3 8 10; 2 1 2), (1 4 7; 2 2 0), (2 5 11; 1 1 0),

(2 8 11; 1 2 1), (3 4 10; 1 0 2), (5 7 12; 0 2 2), (1 6 9; 2 1 2),

(3 6 10; 1 2 1), (2 9 11; 2 0 1), (1 5 8; 1 0 2), (4 7 12; 2 2 0),

(3 6 8; 2 0 1), (5 9 10; 1 2 1), (2 4 12; 0 1 1), (1 7 11; 1 1 0),

(3 5 11; 1 2 1), (6 7 10; 1 2 1), (2 4 8; 1 0 2), (1 9 12; 0 0 0),

(1 6 7 11; 1 0 2 2 1 2), (2 5 9 10; 0 0 0 0 0 0), (3 4 8 12; 0 1 0 1 0 2),

(2 6 8 12; 0 2 0 2 0 1), (3 5 7 11; 2 0 1 1 2 1), (1 4 9 10; 0 2 1 2 1 2),

(3 6 9 11; 0 1 0 1 0 2), (2 4 7 10; 2 0 2 1 0 2), (1 5 8 12; 0 1 1 1 1 0).

A uniformly resolvable {3,4}-LRGDD3 of type 34 with r3 = 6 and r4 = 5; each row
forms a parallel class:

(3 5 10; 1 2 1), (6 7 11; 1 0 2), (1 4 8; 0 1 1), (2 9 12; 1 2 1),

(3 8 11; 2 2 0), (2 4 10; 1 2 1), (1 6 9; 0 2 2), (5 7 12; 0 2 2),

(2 6 11; 1 0 2), (5 8 12; 1 0 2), (1 7 10; 1 2 1), (3 4 9; 1 2 1),

(3 5 7; 0 1 1), (1 4 12; 2 0 1), (6 8 10; 1 1 0), (2 9 11; 0 1 1),

(2 5 8; 1 1 0), (1 7 10; 0 0 0), (4 9 11; 2 1 2), (3 6 12; 1 0 2),

(1 5 11; 2 0 1), (3 8 12; 0 1 1), (2 6 7; 2 1 2), (4 9 10; 0 0 0),

(3 6 9 10; 0 1 0 1 0 2), (1 5 7 11; 0 2 2 2 2 0), (2 4 8 12; 0 0 0 0 0 0),

(2 6 7 12; 0 0 1 0 1 1), (3 5 9 10; 2 0 1 1 2 1), (1 4 8 11; 1 0 1 2 0 1),

(1 5 9 12; 1 0 2 2 1 2), (2 4 7 10; 2 2 1 0 2 2), (3 6 8 11; 2 1 0 2 1 2),

(2 5 8 10; 0 2 0 2 0 1), (3 4 7 11; 2 0 1 1 2 1), (1 6 9 12; 1 1 1 0 0 0),

(2 5 9 11; 2 2 2 0 0 0), (1 6 8 10; 2 2 1 0 2 2), (3 4 7 12; 0 2 2 2 2 0).

A uniformly resolvable {3,4}-LRGDD3 of type 34 with r3 = 3 and r4 = 7; each row
forms a parallel class:

(6 7 11; 2 0 1), (2 4 10; 1 0 2), (3 5 8; 0 1 1), (1 9 12; 1 1 0),

(2 8 11; 2 1 2), (3 6 12; 0 2 2), (1 4 7; 0 2 2), (5 9 10; 1 1 0),

(3 7 10; 2 2 0), (1 5 11; 0 0 0), (2 6 9; 2 1 2), (4 8 12; 1 1 0),

(1 6 8 12; 1 0 2 2 1 2), (2 4 9 11; 2 2 0 0 1 1), (3 5 7 10; 2 0 1 1 2 1),

(1 6 9 10; 2 2 0 0 1 1), (2 5 8 12; 2 1 2 2 0 1), (3 4 7 11; 1 1 0 0 2 2),

(3 5 9 12; 1 1 0 0 2 2), (1 4 8 11; 2 2 2 0 0 0), (2 6 7 10; 1 2 1 1 0 2),

(2 5 9 11; 1 0 2 2 1 2), (3 4 8 10; 0 2 0 2 0 1), (1 6 7 12; 0 0 0 0 0 0),

(2 6 8 10; 0 0 2 0 2 2), (1 5 7 11; 2 1 1 2 2 0), (3 4 9 12; 2 0 1 1 2 1),
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(1 5 8 10; 1 1 1 0 0 0), (2 4 7 12; 0 1 0 1 0 2), (3 6 9 11; 1 2 2 1 1 0),

(1 4 9 10; 1 0 2 2 1 2), (2 5 7 12; 0 0 1 0 1 1), (3 6 8 11; 2 0 1 1 2 1).

The assertions follow by Theorem 1.17. �

Lemma 2.3. There exist all admissible uniformly resolvable {3, 4}-URGDD of type
124, r4 ∈ {0, 2, 4, 6, 8, 10, 12}.

Proof. Let G = {{1, 2, 3} , {4, 5, 6} , {7, 8, 9} , {10, 11, 12}}.
A uniformly resolvable {3,4}-LRGDD4 of type 34 with r3 = 3 and r4 = 10; each row

forms a parallel class:

(5 9 11; 2 2 0), (2 6 12; 0 3 3), (1 7 10; 1 1 0), (3 4 8; 2 2 0),

(2 8 11; 2 1 3), (4 7 12; 0 1 1), (3 5 10; 3 1 2), (1 6 9; 2 2 0),

(1 4 11; 1 2 1), (3 9 12; 1 1 0), (2 5 7; 1 2 1), (6 8 10; 0 1 1),

(2 4 9 12; 2 3 0 1 2 1), (1 5 7 10; 1 0 2 3 1 2), (3 6 8 11; 1 0 0 3 3 0),

(1 6 9 12; 0 3 1 3 1 2), (2 5 8 11; 3 1 3 2 0 2), (3 4 7 10; 3 1 0 2 1 3),

(1 6 7 10; 1 2 3 1 2 1), (3 4 9 11; 0 2 3 2 3 1), (2 5 8 12; 2 3 2 1 0 3),

(1 4 8 12; 2 1 2 3 0 1), (3 5 9 10; 0 0 3 0 3 3), (2 6 7 11; 1 0 2 3 1 2),

(1 5 8 12; 0 3 3 3 3 0), (3 6 7 11; 0 2 2 2 2 0), (2 4 9 10; 1 1 3 0 2 2),

(2 5 8 10; 0 0 0 0 0 0), (3 4 7 12; 1 0 0 3 3 0), (1 6 9 11; 3 0 3 1 0 3),

(3 6 8 12; 3 1 3 2 0 2), (2 4 9 10; 3 2 2 3 3 0), (1 5 7 11; 3 3 0 0 1 1),

(3 6 8 10; 2 3 2 1 0 3), (2 4 7 11; 0 1 0 1 0 3), (1 5 9 12; 2 1 0 3 2 3),

(3 5 7 12; 1 3 2 2 1 3), (1 4 8 11; 3 0 1 1 2 1), (2 6 9 10; 2 0 1 2 3 1),

(3 5 9 11; 2 3 1 1 3 2), (1 4 8 10; 0 2 0 2 0 2), (2 6 7 12; 3 3 1 0 2 2).

Therefore, there exists a {3, 4}-URGDD of type 124 with r3 = 3 and r4 = 10 by
Theorem 1.17. The assertions follow by Lemma 1.15 �

Lemma 2.4. There exists a uniformly resolvable {3, 4}-URGDD of type 34 with r3 = 3
and r4 = 1.

Proof. There exists a 3-RGDD of type 43 with r3 = 4 by Theorem 1.4. This is equiv-
alent to the desired design. �

Lemma 2.5. There exist all admissible uniformly resolvable {3, 4}-URGDD of type
154, r4 ∈ {1, 3, 5, 7, 9, 11, 13, 15}.

Proof. There exists a {3, 4}-URGDD of type 34 with r0
4 = 1 by Lemma 2.4. We

expand all points of this design five times. The result is a {3, 4}-URGDD of type 154 with
r4 = 5. There exists a 4-RGDD of type 154 with r4 = 15 by Theorem 1.4. There exists a
{3, 4}-LRGDD5 of type 34 with r4 ∈ {1, 3, 7, 9, 11, 13} in the online resource [34]. The
assertions follow by Theorem 1.17. �

Lemma 2.6. There exists a uniformly resolvable {3, 4}-URGDD of type 184, r4 ∈
{0, 2, . . . , 18}.
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Proof. There exists 4-RGDD of type 184 by Theorem 1.4. There exists a uniformly
resolvable {3,4}-URGDD of type 64 with r4 ∈ {0, 2, 4} by Lemma 2.1. We expand each
point three times, use a {3,4}-URGDD of type 34 with r3 = 3, r4 = 1 (Lemma 2.4) as
ingredient design, and obtain a {3,4}-URGDD of type 184 with r4 ∈ {0, 2, 4}. There exists
a {3, 4}-LRGDD6 of type 34 with r4 ∈ {6, 8, 10, 12, 14, 16} in the online resource [34].
The assertions follow by Theorem 1.17. �

Lemma 2.7. There exists a uniformly resolvable {3,4}-URGDD of type 214, r4 ∈
{1, 3, . . . , 21}.

Proof. There exists a {3, 4}-URGDD of type 34 with r0
4 = 1 by Lemma 2.4. We expand

all points of this design seven times. The result is a {3,4}-URGDD of type 214 with r4 = 7.
There exists a 4-RGDD of type 214 with r4 = 21 by Theorem 1.4.

There exists a {3, 4}-LRGDD7 of type 34 with r4 ∈ {1, 3, 5, 9, 11, 13, 15, 17, 19} in
the online resource [34]. The assertions follow by Theorem 1.17. �

Lemma 2.8. There exists a uniformly resolvable {3,4}-URGDD of type 274, r4 ∈
{1, 3, 5, 7, 9, 27}.

Proof. There exists a uniformly resolvable {3,4}-URGDD of type 94 with r4 ∈
{1, 3, 5, 7, 9} by Lemma 2.2. We expand each point three times, use a {3,4}-URGDD
of type 34 with r3 = 3, r4 = 1 (Lemma 2.4) as ingredient design, and obtain a
{3,4}-URGDD of type 274 with r4 ∈ {1, 3, 5, 7, 9}. There exists a 4-RGDD of type 274

by Theorem 1.4. �

Lemma 2.9. There exists a uniformly resolvable {3,4}-URGDD of type 66, r4 ∈
{0, 2, 4, 6, 8}.

Proof. There exists a 3-RGDD of type 66 by Theorem 1.4. All other designs are
constructed directly in [34]. �

Lemma 2.10. There exists a {3, 4}-URGDD of type 604, r4 ∈ {0, 2, . . . , 60}.

Proof. There exists a 4-RGDD of type 54 by Theorem 1.4, which is our master
design. We take all designs of Lemma 2.3 as ingredient designs. We expand all
points of the master design 12 times and obtain a {3, 4}-URGDD of type 604 with
r4 ∈ {0, 2, . . . , 60} . �

Lemma 2.11. There exists a uniformly resolvable URD({3, 4}; 276) with r4 = 9.

Proof. There exists a perfectly uniform semiframe {3, 4}-LRGDD69 of type 14 with
r̃3 = 30 per group and r4 = 9 in the online resource [34]. This results in a perfectly
uniform semiframe {3, 4}-SF of type 694 with r̃3 = 30 per group and r4 = 9 by Theo-
rem 1.19. We fill the groups with a 3-RGDD of type 169 with r3 = 34 (Theorem 1.4).
Therefore, we obtain a URD({3, 4}; 276) with r4 = 9. �

Theorem 2.12. There exists a URD({3, 4}; v) with r4 = 9 if and only if v ≡ 0 (mod12)
except v = 12, 24.
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Proof. A URD({3, 4}; 276) with r4 = 9 is obtained in Lemma 2.11. The assertion
follows by Theorem 1.12. �

3. ADMISSIBLE URDs FOR SMALL v

Lemma 3.1. There exist all admissible URD({3, 4}; 24), r4 ∈ {1, 3, 5, 7}.

Proof. The assertion follows by Theorem 1.12. �

Lemma 3.2. There exist all admissible URD({3, 4}; 36), r4 ∈ {1, 3, 5, 7, 9, 11}.

Proof. There exists a 4-RGDD of type 312 with r4 = 11 by Theorem 1.4. The assertion
follows by Theorem 1.12. �

Lemma 3.3. There exist all admissible URD({3, 4}; v), v ∈ {48, 96, 144, 192}.

Proof. The assertion follows by Theorem 1.14. �

Lemma 3.4. There exist all admissible URD({3, 4}; 60), r4 ∈ {1, 3, 5, . . . , 19}.

Proof. There exists a uniformly resolvable {3, 4}-URGDD of type 154 with r4 ∈ {11,

13} by Lemma 2.5. Filling the groups with a 3-RGDD of type 115 results in a URD
({3, 4}; 60) with r4 ∈ {11, 13}. The assertion follows by Theorems 1.12 and 1.13. �

Lemma 3.5. There exist all admissible URD({3, 4}; 72), r4 ∈ {1, 3, 5, . . . , 23}.

Proof. There exists a {3, 4}-LRGDD3 of type 124 with r4 ∈ {11, 13, 15} in the online
resource [34]. Therefore, there exists a URD({3, 4}; 72) with r4 ∈ {11, 13, 15} by The-
orem 1.17. There exists a {3, 4}-LRGDD6 of type 26 with r4 ∈ {16, 18} in the online
resource [34]. Therefore, there exists a {3, 4}-URGDD of type 126 with r4 ∈ {16, 18} by
Theorem 1.17. Filling the groups with a {3, 4}-URGDD of type 112 with r3 = 4, r4 = 1
( Lemma 2.4) results in a URD({3, 4}; 72) with r4 ∈ {17, 19}. The assertion follows by
Theorems 1.12 and 1.13. �

Lemma 3.6. There exist all admissible URD({3, 4}; 84), r4 ∈ {1, 3, 5, . . . , 21, 25,

27}, possibly excepting r4 = 23.

Proof. There exists a labeled perfectly uniform semiframe {3, 4}-LRGDD21 of type 14

with r̃3 ∈ {5, 4, 3, 2, 1} per group and r4 ∈ {11, 13, 15, 17, 19}, respectively, in the online
resource [34]. This results in a semiframe {3, 4}-SF of type 214 with r̃3 ∈ {5, 4, 3, 2, 1}
per group and r4 ∈ {11, 13, 15, 17, 19}, respectively, by Theorem 1.19. We fill the
groups with a 3-RGDD of type 121 with r3 = 10 (Theorem 1.4). This expands all par-
tial 3-pc and induces additional 3-pc. Therefore, we obtain a URD({3, 4}; 84) with
r4 ∈ {11, 13, 15, 17, 19}.There exists a 4-RGDD of type 214 with r4 = 21 by Theo-
rem 1.4. Filling the groups with a 3-RGDD of type 121 (Theorem 1.4) results in a
URD({3, 4}; 84) with r4 = 21. The assertion follows by Theorems 1.12 and 1.13. �
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Lemma 3.7. There exist all admissible URD({3, 4}; 108), r4 ∈ {1, 3, 5, . . . , 27, 33,

35}, possibly excepting r4 ∈ {29, 31}.
Proof. There exists a labeled perfectly uniform semiframe {3, 4}-LRGDD27 of type
14 with r̃3 ∈ {8, 7, 6, 5, 4, 3, 2, 1} per group and r4 ∈ {11, 13, 15, 17, 19, 21, 23, 25}, re-
spectively, in the online resource [34]. This results in a semiframe {3, 4}-SF of type 274

with r̃3 ∈ {8, 7, 6, 5, 4, 3, 2, 1} per group and r4 ∈ {11, 13, 15, 17, 19, 21, 23, 25}, re-
spectively, by Theorem 1.19. We fill the groups with a 3-RGDD of type 127 with r3 = 13
(Theorem 1.4). This expands all partial 3-pc and induces additional 3-pc. Therefore,
we obtain a URD({3, 4}; 108) with r4 ∈ {11, 13, 15, 17, 19, 21, 23, 25}. There exists a
4-RGDD of type 274 with r4 = 27 by Theorem 1.4. Filling the groups with a 3-RGDD of
type 127 (Theorem 1.4) results in a URD({3, 4}; 108) with r4 = 27. The assertion follows
by Theorems 1.12 and 1.13. �

Lemma 3.8. There exists a {3, 4}-URGDD of type 245 for r4 ∈ {0, 2, 4, . . . , 16, 32}.
Proof. There exists a 4-RGDD of type 54 by Theorem 1.4. This is also a {4, 5}-
URGDD of type 45 r4 = 4, r5 = 1, which we take as the master design. There exist
a 3-RGDD of types 64 and 65 by Theorem 1.4 and a {3,4}-URGDD of type 64 with
r4 ∈ {0, 2, 4} by Lemma 2.1, which are our ingredient designs. We expand all points
of the master design six times. All blocks of any parallel class have to be filled with
the same ingredient design. Therefore, each parallel class expands in a way that several
uniform parallel classes are created. Each 4-pc of the master design results in 0, 2, or
4 4-pcs. We obtain a {3, 4}-URGDD of type 245 with r4 ∈ {0, 2, 4, . . . , 16}, as we fill
all parallel classes appropriately. There exists a 4-RGDD of type 245 with r4 = 32 by
Theorem 1.4. �

Lemma 3.9. There exist all admissible URD({3, 4}; 120), possibly excepting r4 ∈
{27, 29, 31}.
Proof. We fill each group in Lemma 3.8 with the same appropriate URD({3, 4}; 24)
and obtain a URD({3, 4}; 120) with r4 ∈ {1, 3, 5, . . . , 23, 33, 35, 37, 39}.

There exists a {3, 4}-URGDD of type 38, r0
4 = 5 by Lemma 3.1, which we take as the

master design. There exist a 3-RGDD of type 53 and a 4-RGDD of type 54 by Theorem
1.4, which are our ingredient designs. We expand all points of the master design five
times. We obtain a {3, 4}-URGDD of type 158 with r4 = 25, filling the groups with a
3-RGDD of type 115(Theorem 1.4) results in a URD({3, 4}; 120) with r4 = 25. �

Lemma 3.10. There exist all admissible URD({3, 4}; 132), possibly excepting r4 ∈
{35, 37, 39}.
Proof. There exists a {3, 4}-URGDD of type 34 with r0

3 = 3, r0
4 = 1 by Lemma 2.4,

which we take as the master design. There exist a 3-RGDD of type 113 and a 4-RGDD
of type 114 by Theorem 1.4, which are our ingredient designs. We expand all points of
the master design 11 times. The 4-pc of the master design results in 11 4-pcs. We obtain
a {3, 4}-URGDD of type 334 with r4 = 11, filling the groups with a 3-RGDD of type 133

(Theorem 1.4) results in a URD({3, 4}; 132) with r4 = 11.
There exists a labeled perfectly uniform semiframe {3, 4}-LRGDD33 of type

14 with r̃3 ∈ {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} per group and r4 ∈ {13, 15, 17, 19, 21, 23,
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25, 27, 29, 31}, respectively, in the online resource [34]. This results in a perfectly uni-
form semiframe {3, 4}-SF of type 334 with r̃3 ∈ {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} per group
and r4 ∈ {13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, respectively, by Theorem 1.19. We fill
the groups with a 3-RGDD of type 133 with r3 = 16 (Theorem 1.4). This expands all
partial 3-pc and induces additional 3-pc. Therefore, we obtain a URD({3, 4}; 132) with
r4 ∈ {13, 15, 17, 19, 21, 23, 25, 27, 29, 31}.

There exists a 4-RGDD of type 334 with r4 = 33 by Theorem 1.4. Filling the groups
with a 3-RGDD of type 133 (Theorem 1.4) results in a URD({3, 4}; 132) with r4 = 33.
The assertion follows by Theorems 1.12 and 1.13. �

Lemma 3.11. There exist all admissible URD({3, 4}; 156), possibly excepting r4 ∈
{41, 43, 45, 47}.

Proof. There exists a {3, 4}-URGDD of type 34 with r0
3 = 3, r0

4 = 1 by Lemma 2.4,
which we take as the master design. There exist a 3-RGDD of types 133 and a 4-RGDD
of type 134 by Theorem 1.4, which are our ingredient designs. We expand all points of
the master design 13 times. The 4-pc of the master design results in 13 4-pcs. We obtain a
{3, 4}-URGDD of type 394 with r4 = 13, filling the groups results in a URD({3, 4}; 156)
with r4 = 13.

There exists a 3-RGDD of type 523 by Theorem 1.4. Filling the groups with a 4-RGDD
of type 152 (Theorem 1.4) results in a URD({3, 4}; 156) with r4 = 17.

There exists a labeled perfectly uniform semiframe {3, 4}-LRGDD39 of type 14 with
r̃3 ∈ {14, 12, 10, 9, 8, . . . , 1} per group and r4 ∈ {11, 15, 19, 21, . . . , 37}, respectively,
in the online resource [34]. This results in a perfectly uniform semiframe{3, 4}-SF of
type 394 with the same r̃3 per group and r4, respectively, by Theorem 1.19. We fill
the groups with a 3-RGDD of type 139 with r3 = 19 (Theorem 1.4). This expands all
partial 3-pc and induces additional 3-pc. Therefore, we obtain a URD({3, 4}; 156) with
r4 ∈ {11, 15, 19, 21, . . . , 37}.

There exists a 4-RGDD of type 394 with r0
4 = 39 by Theorem 1.4. Filling the groups

with a 3-RGDD of type 139 (Theorem 1.4) results in a URD({3, 4}; 156) with r4 = 39.
The assertion follows by Theorems 1.12 and 1.13. �

Lemma 3.12. There exists a {3, 4}-URGDD of type 36g with r4 ∈ {0, g − 1, g +
1, . . . , 9(g − 1)} for g ≥ 4, g odd.

Proof. Let g ≥ 4 odd. There exists a 3-RGDD of type 36g by Theorem 1.4.
There exists a 4-RGDD of type g4 by Theorem 1.4. This is also a {4, g}-URGDD of

type 4g , r4 = g − 1, rg = 1, which we take as the master design. We take the URGDDs
of Lemma 2.2 as ingredient designs. We expand all points of the master design nine
times. All blocks of any parallel class have to be filled with the same ingredient design.
Therefore, each parallel class expands in a way that several uniform parallel classes are
created. Each 4-pc of the master design results in 1, 3, 5, 7, or 9 4-pcs. There exists a
3-RGDD of type 9g by Theorem 1.4 for g odd. We obtain a {3, 4}-URGDD of type 36g

with r4 ∈ {0, g − 1, g + 1, . . . , 9(g − 1)}, as we fill all parallel classes appropriately. �

Lemma 3.13. There exists a {3, 4}-URGDD of type 363i+1 for i ≥ 1 and r4 ∈
{0, 4i, 4i + 2, 4i + 4, . . . , 36i}.
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Proof. There exists a 3-RGDD of type 363i+1 for i ≥ 1by Theorem 1.4.
There exists a 4-RGDD of type 43i+1 for i ≥ 1by Theorem 1.4, which we take as the

master design and all designs of Lemma 2.2 as ingredient designs. We expand all points
of the master design nine times. All blocks of any parallel class have to be filled with
the same ingredient design. Therefore, each parallel class expands in a way that several
uniform parallel classes are created. Each 4-pc of the master design results in 1, 3, 5, 7, or 9
4-pcs. We obtain a {3, 4}-URGDD of type 363i+1 with r4 ∈ {4i, 4i + 2, 4i + 4, . . . , 36i},
as we fill all parallel classes appropriately. �

Lemma 3.14. There exists a {3, 4}-URGDD of type 243i+1 for i ≥ 1 and r4 ∈
{0, 2, 4, . . . , 16i, 24i}.

Proof. There exists a 4-RGDD of type 243i+1 for i ≥ 1 by Theorem 1.4.
There exists a 4-RGDD of type 43i+1 for i ≥ 1 by Theorem 1.4, which we take as the

master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand
all points of the master design six times. All blocks of any parallel class have to be filled
with the same ingredient design. Therefore, each parallel class expands in a way that
several uniform parallel classes are created. Each 4-pc of the master design results in 0,
2, or 4 4-pcs. We obtain a {3, 4}-URGDD of type 243i+1 with r4 ∈ {0, 2, 4, . . . , 16i},
as we fill all parallel classes appropriately. �

Lemma 3.15. There exists a {3, 4}-URGDD of type 243i+1 r4 ∈ {0, 2, 4, . . . ,

22i, 24i} for i ≥ 2 and i /∈ {3, 11, 15}.

Proof. There exists an RTD(6, 3i+1) for i ≥ 2, i /∈ {3, 7, 11, 15} by Theorem 1.3 and
therefore also a {6, 3i+1}-URGDD of type 63i+1 with r6 = 3i and r3i+1 = 1.

We apply the last as the master design. There exist a {3, 4}-URGDD of type 46,
r4 ∈ {0, 2, 4, 6} by Lemma 3.1 and a 4-RGDD of type 43i+1 with r0

4 = 4i by Theorem
1.4, which we take as ingredient designs. We expand all points of the master design
four times. All blocks of any parallel class have to be filled with the same ingredient
design. Each 6-pc of the master design results in 0, 2, 4, or 6 4-pcs. We obtain a
{3, 4}-URGDD of type 243i+1 with r4 ∈ {4i, 4i + 2, . . . , 4i + 18i}, as we fill all parallel
classes appropriately. The assertion follows by Lemma 3.14.

There exists a 4-RGDD of type 222 by Theorem 1.4, which we take as the master
design. We take the URGDDs of Lemma 2.3 as ingredient designs. We expand all points
of the master design 12 times. All blocks of any parallel class have to be filled with
the same ingredient design. Therefore, each parallel class expands in a way that several
uniform parallel classes are created. Each 4-pc of the master design results in 0, 2, . . . ,
or 12 4-pcs. We obtain a {3, 4}-URGDD of type 2422 with r4 ∈ {0, 2, 4, . . . , 168}, as
we fill all parallel classes appropriately. �

Lemma 3.16. There exist all admissible URD({3, 4}; 168).

Proof. There exists a {3, 4}-URGDD of type 247 with r4 ∈ {0, 2, 4, . . . , 44, 48} by
Lemma 3.15. The assertion follows by filling all groups appropriately with the same
URD({3, 4}; 24). �

Lemma 3.17. There exist all admissible URD({3, 4}; 180).
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Proof. There exists a {3, 4}-URGDD of type 365 with r4 ∈ {0, 4, 6, 8, . . . , 36, 48} by
Lemma 3.12 and Theorem 1.4. The assertion follows by filling all groups appropriately
with the same URD({3, 4}; 36) (Lemma 3.2). �

Lemma 3.18. There exist all admissible {3, 4}-URGDD of type 364. There exists a
{3, 4}-URGDD of type 366 with r4 ∈ {0, 2, . . . , 54, 60}.

Proof. There exists a {3, 4}-URGDD of type 34 with r4 = 1 by Lemma 2.4. We expand
all points of this design 12 times and obtain a {3, 4}-URGDD of type 364 with r4 = 2.
For u = 4, the assertion follows by Lemma 3.13.

There exists a {3, 4}-URGDD of type 46 with r4 ∈ {0, 2, 4, 6} by Lemma 3.1, which
we take as the master design. We take the RGDDs of Lemma 2.2 and the 3-RGDD of
type 93 (Theorem 1.4) as ingredient designs. We expand all points of the master design
nine times. Therefore, each parallel class expands in a way that several uniform parallel
classes are created. Each 4-pc of the master design results in 1, 3, 5, 7, or 9 4-pcs. We
obtain a {3, 4}-URGDD of type 366 with r4 ∈ {0, 2, . . . , 54}. There exists a 4-RGDD of
type 366 with r4 = 60 by Theorem 1.4. �

Lemma 3.19. There exist all admissible URD({3, 4}; 216).

Proof. There exists a {3, 4}-URGDD of type 366 with r4 ∈ {0, 2, . . . , 54, 60} by
Lemma 3.18. The assertion follows by filling all groups appropriately with the same
URD({3, 4}; 36). �

Lemma 3.20. There exists a {3, 4}-URGDD of type 36u, r4 ∈ {0, 2, . . . , 8(u − 1)} for
u ≥ 7.

Proof. There exists a 6-RGDD of type u6, u ≥ 7, and u /∈ {10, 14, 15, 18,

20, 22, 26, 30, 34, 38, 46, 60} by Theorem 1.3. This is also a {6, u}-URGDD of type
6u r6 = u − 1, ru = 1, which we take as the master design. We take the URGDDs of
Lemma 2.9 as ingredient designs. We expand all points of the master design six times. All
blocks of any parallel class have to be filled with the same ingredient design. Therefore,
each parallel class expands in a way that several uniform parallel classes are created. Each
4-pc of the master design results in 0, 2, . . . , 8 4-pcs. There exists a 3-RGDD of type 6u

by Theorem 1.4. We obtain a {3, 4}-URGDD of type 36u with r4 ∈ {0, 2, . . . , 8(u − 1)},
as we fill all parallel classes appropriately.

There exists a 4-RGDD of type 6u with r4 = 2(u − 1) for u ∈ {10, 14, 18, 20,

22, 26, 30, 34, 38, 46, 60} by Theorem 1.4, which we take as the master design. We
take the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the
master design six times. All blocks of any parallel class have to be filled with the same
ingredient design. Therefore, each parallel class expands in a way that several uniform
parallel classes are created. Each 4-pc of the master design results in 0, 2, or 4 4-pcs. We
obtain a {3, 4}-URGDD of type 36u with r4 ∈ {0, 2, 4, . . . , 8(u − 1)}, as we fill each
parallel class appropriately.

There exists a {3, 4}-URGDD of type 415 with r4 ∈ {0, 2, . . . , 18} by Lemma 3.4. We
expand all points of this design nine times and obtain a {3, 4}-URGDD of type 3615 with
r4 ∈ {0, 2, . . . , 162} by filling in with the {3, 4}-URGDD of type 94 from Lemma 2.2. �
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Lemma 3.21. There exists a {3, 4}-frame of type 180u for u ≥ 5 and r̃4 ∈
{4, 6, 8, . . . , 60} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 12u for u ≥ 5 with �
r4 = 4 per group by Theorem

1.6, which we take as the master design. We take the RGDDs of Lemma 2.5 as ingredient
designs. We expand all points of the master design 15 times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each holey parallel
class expands in a way that several uniform holey parallel classes are created. Each 4-pc
of the master design results in 1, 3, 5, . . . , 15 4-pcs. We obtain a {3, 4}-frame of type
180u with r̃4 ∈ {4, 6, 8, . . . , 60} per group of the frame. �

Lemma 3.22. For i ≥ 5, there exists all admissible {3, 4}-URGDD of type 365i+1,
possibly excepting r4 ∈ {60i − 4, 60i − 2}.

Proof. There exists a {3, 4}-frame of type 180u for u ≥ 5 and r̃4 ∈ {4, 6, 8, . . . , 60}
per group of the frame by Lemma 3.21. There exists a {3, 4}-URGDD of type 366 with
r4 ∈ {0, 2, 4, . . . , 54, 60} by Lemma 3.18. Adjoin 36 infinite points to the frame and
fill each group with the above URGDD, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as are
corresponding to the group. Then the number of 3-pcs corresponding to the group of the
frame and its URGDD is also equal. The result is a {3, 4}-URGDD of type 365i+1 for
i ≥ 5 and r4 ∈ {4i, 4i + 2, . . . , 60(i − 1) + 54, 60i}. The assertion follows by Lemma
3.20. �

Lemma 3.23. There exist all admissible {3, 4}-URGDD of type 36u for u ∈ {7, 8, 24}.

Proof. For u = 7, the assertion follows by Lemmas 3.20 and 3.13.
There exists a {3, 4}-URGDD of type 38 with r4 ∈ {1, 3, 5, 7} by Lemma 3.1. There

exists a {3, 4}-URGDD of type 324 with r4 ∈ {1, 3, . . . , 23} by Lemma 3.5.
We expand all points of each design 12 times, taking the RGDDs of Lemma 2.3 as

ingredient designs to obtain a {3, 4}-URGDD of type 368 with r4 ∈ {0, 2, . . . , 84} and a
{3, 4}-URGDD of type 3624 with r4 ∈ {0, 2, . . . , 276}, respectively. �

Lemma 3.24. There exists a {3, 4}-URGDD of type 3617 for r4 ∈ {0, 2, 4, . . . ,

176, 192}.

Proof. There exists an RTD(12, 17) by Theorem 1.3. Therefore, there exists a {12,
17}-URGDD of type 1217 with r12 = 16 and r17 = 1. We apply the latter as the master
design. There exist a {3, 4}-URGDD of type 312, r4 ∈ {1, 3, 5, 7, 9, 11} by Lemma
3.2 and a 3-RGDD of type 317 by Theorem 1.4, which we take as ingredient designs. We
expand all points of the master design three times. All blocks of any parallel class have
to be filled with the same ingredient design. Each 12-pc of the master design results in 1,
3, . . . , or 11 4-pcs. We obtain a {3, 4}-URGDD of type 3617 with r4 ∈ {16, 18, . . . , 176},
as we fill all parallel classes appropriately. The assertion follows by Lemma 3.20 and
Theorem 1.4. �
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Lemma 3.25. There exist all admissible URD({3, 4}; 300).

Proof. There exist a 3-RGDD of type 605 and a 4-RGDD of type 605 by Theorem 1.4.
There exists a 4-RGDD of type 54 by Theorem 1.4. This is also a {4, 5}-URGDD of

type 45 r4 = 4, r5 = 1, which we take as the master design. We take the URGDDs of
Lemma 2.5 and a 3-RGDD of type 155 (Theorem 1.4) as ingredient designs. We expand all
points of the master design 15 times. All blocks of any parallel class have to be filled with
the same ingredient design. Therefore, each parallel class expands in a way that several
uniform parallel classes are created. Each 4-pc of the master design results in 1, 3, . . . , 15
4-pcs. We obtain a {3, 4}-URGDD of type 605 with r4 ∈ {0, 4, 6, . . . , 60, 80}, as we
fill all parallel classes appropriately. By filling all groups appropriately with the same
URD({3, 4}; 60) (Lemma 3.4), we obtain all admissible URD({3, 4}; 300). �

Lemma 3.26. There exist all admissible URD({3, 4}; v) for v ∈ {252, 360, 468}.

Proof. There exists a {3, 4}-URGDD of type 363i+1, r4 ∈ {0, 2, 4, . . . , 36i} for i ∈
{2, 3, 4} by Lemmas 3.13 and 3.20. Filling in all groups with the same appropriate URD
({3, 4}; 36) results in all admissible URD({3, 4}; v) for v ∈ {252, 360, 468}. �

We summarize the results of this section about small URDs.

Theorem 3.27. There exist all admissible URD({3, 4}; v), v ≡ 0 (mod 12), v < 200,
except when v = 12 and r4 = 3 and possibly excepting:

v = 84: r4 = 23;

v = 108: r4 ∈ {29, 31};
v = 120: r4 ∈ {27, 29, 31};
v = 132: r4 ∈ {35, 37, 39};
v = 156: r4 ∈ {41, 43, 45, 47}.

Proof. The assertion follows by the lemmas of this section. �

4. SOME {3, 4}-URGDDS AND {3, 4}-FRAMES

Lemma 4.1. There exists a {3, 4}-frame of type 108u for u ≥ 5, u /∈ {15, 23, 27},
u ≡ 1 (mod 2) and r̃4 ∈ {0, 2, 4, . . . , 24} per group of the frame. This r̃4 can be chosen
independently for each group.

Proof. There exists a 4-frame of type 18u for u ≥ 5, u /∈ {15, 23, 27}, u ≡ 1 (mod 2)
with �

r4 = 6 per group by Theorem 1.6, which we take as the master design. We take the
URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design
six times. All blocks of any holey parallel class have to be filled with the same ingredient
design. Therefore, each holey parallel class expands in a way that several uniform holey
parallel classes are created. Each 4-pc of the master design results in 0, 2, or 4 4-pcs.
We obtain a {3, 4}-frame of type 108u with r̃4 ∈ {0, 2, 4, . . . , 24} per group of the
frame. �
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Lemma 4.2. There exists a {3, 4}-f rame of type 108u for u ≥ 5 and r̃4 ∈ {4, 6,

8, . . . , 36} per group of the frame. This r̃4 can be chosen independently for each group.

Proof. There exists a 4-frame of type 12u for u ≥ 5 with �
r4 = 4 per group by Theorem

1.6, which we take as the master design. We take the RGDDs of Lemma 2.2 as ingredient
designs. We expand all points of the master design nine times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each holey parallel
class expands in a way that several uniform holey parallel classes are created. Each 4-pc
of the master design results in 1, 3, 5, 7, or 9 4-pcs. We obtain a {3, 4}-frame of type
108u with r̃4 ∈ {4, 6, 8, . . . , 36} per group of the frame. �

Lemma 4.3. There exists a {3, 4}-f rame of type 144u for u ≥ 5 and r̃4 ∈ {0, 2,

4, . . . , 48} per group of the frame. This r̃4 can be chosen independently for each group.

Proof. There exists a 4-frame of type 12u for u ≥ 5 with �
r4 = 4 per group by Theorem

1.6, which we take as the master design. We take the RGDDs of Lemma 2.3 as ingredient
designs. We expand all points of the master design 12 times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each holey parallel
class expands in a way that several uniform holey parallel classes are created. Each 4-pc
of the master design results in 0, 2, 4, 6, 8, 10, or 12 4-pcs. We obtain a {3, 4}-frame of
type 144u with r̃4 ∈ {0, 2, 4, . . . , 48} per group of the frame. �

Lemma 4.4. There exists a {3, 4}-f rame of type 216u for u ≥ 5 and r̃4 ∈
{0, 2, 4, . . . , 72} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 12u for u ≥ 5 with �
r4 = 4 per group by Theorem

1.6, which we take as the master design. We take the URGDDs of Lemma 2.6 as ingredient
designs. We expand all points of the master design 18 times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each holey parallel
class expands in a way that several uniform holey parallel classes are created. Each 4-pc
of the master design results in 0, 2, . . . , or 18 4-pcs. We obtain a {3, 4}-frame of type
216u with r̃4 ∈ {0, 2, 4, . . . , 72} per group of the frame. �

Lemma 4.5. There exists a {3, 4}-frame of type 362i+1 for i ≥ 2, i /∈ {3, 11, 13,

17, 19, 23} and r̃4 ∈ {0, 2, 4, 6, 8} per group of the frame. This r̃4 can be chosen inde-
pendently for each group.

Proof. There exists a 4-frame of type 62i+1 with �
r4 = 2 per group for i ≥ 2 and

i /∈ {3, 11, 13, 17, 19, 23} by Theorem 1.6, which we take as the master design. We take
the URGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master
design six times. All blocks of any holey parallel class have to be filled with the same
ingredient design. Therefore, each holey parallel class expands in a way that several
uniform holey parallel classes are created. Each 4-pc of the master design results in 0, 2,
or 4 4-pcs. We obtain a {3, 4}-frame of type 362i+1 with r̃4 ∈ {0, 2, 4, 6, 8} per group of
the frame. �

Lemma 4.6. There exists a {3, 4}-URGDD of type 180u for u ≥ 4 and r4 ∈ {0, 4(u −
1), 4(u − 1) + 2, . . . , 60(u − 1)}.
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Proof. There exists a 3-RGDD of type 180u for u ≥ 4 by Theorem 1.4.
There exists a 4-RGDD of type 12u for u ≥ 4 by Theorem 1.4, which we take as the

master design and all designs of Lemma 2.5 as ingredient designs. We expand all points
of the master design 15 times. All blocks of any parallel class have to be filled with
the same ingredient design. Therefore, each parallel class expands in a way that several
uniform parallel classes are created. Each 4-pc of the master design results in 1, 3, 5, . . . ,
15 4-pcs. We obtain a {3, 4}-URGDD of type 180u with r4 ∈ {0, 4(u − 1), 4(u − 1) +
2, . . . , 60(u − 1)}, as we fill all parallel classes appropriately. �

Lemma 4.7. There exists a {3, 4}-f rame of type 360u for u ≥ 5 and r̃4 ∈
{0, 2, 4, . . . , 80} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 60u for u ≥ 5 with �
r4 = 20 per group by

Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.1
as ingredient designs. We expand all points of the master design six times. All blocks
of any holey parallel class have to be filled with the same ingredient design. Therefore,
each holey parallel class expands in a way that several uniform holey parallel classes are
created. Each 4-pc of the master design results in 0, 2, or 4 4-pcs. We obtain a {3, 4}-frame
of type 360u with r̃4 ∈ {0, 2, 4, . . . , 80} per group of the frame. �

Lemma 4.8. There exists a {3, 4}-f rame of type 360u for u ≥ 5 and r̃4 ∈ {8, 10,

12, . . . , 120} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 24u for u ≥ 5 with �
r4 = 8 per group by

Theorem 1.6, which we take as the master design. We take the RGDDs of Lemma 2.5 as
ingredient designs. We expand all points of the master design 15 times. All blocks of any
parallel class have to be filled with the same ingredient design. Therefore, each holey
parallel class expands in a way that several uniform holey parallel classes are created.
Each 4-pc of the master design results in 1, 3, 5, . . . , 15 4-pcs. We obtain a {3, 4}-frame
of type 360u with r̃4 ∈ {8, 10, 12, . . . , 120} per group of the frame. �

Lemma 4.9. There exists a {3, 4}-URGDD of type 1802i for i ≥ 2 and r4 ∈ {0, 2,

4, . . . , 40(2i − 1)}.

Proof. There exists a 4-RGDD of type 302i for i ≥ 2 by Theorem 1.4, which we take as
the master design. We take the URGDDs of Lemma 2.1 as ingredient designs. We expand
all points of the master design six times. All blocks of any parallel class have to be filled
with the same ingredient design. Therefore, each parallel class expands in a way that
several uniform parallel classes are created. Each 4-pc of the master design results in 0, 2,
or 4 4-pcs. We obtain a {3, 4}-URGDD of type 1802i with r4 ∈ {0, 2, 4, . . . , 40(2i − 1)},
as we fill all parallel classes appropriately. �

Theorem 4.10. There exists a {3, 4}-URGDD of type 1802i for i ≥ 2 and r4 ∈ {0, 2,

4, . . . , 60(2i − 1)}.

Proof. The assertion follows by Lemmas 4.6 and 4.9. �
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Lemma 4.11. There exists a {3, 4}-URGDD of type 1203i+1 for i ≥ 1 and r4 ∈
{0, 2, 4, . . . , 80i}.

Proof. There exists a 4-RGDD of type 203i+1 with r0
4 = 20i for i ≥ 1 by Theorem 1.4,

which we take as the master design. We take the URGDDs of Lemma 2.1 as ingredient
designs. We expand all points of the master design six times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each parallel class
expands in a way that several uniform parallel classes are created. Each 4-pc of the
master design results in 0, 2, or 4 4-pcs. We obtain a {3, 4}-URGDD of type 1203i+1 with
r4 ∈ {0, 2, 4, . . . , 80i}, as we fill all parallel classes appropriately. �

Lemma 4.12. There exists a {3, 4}-URGDD of type 1203i+1 for i ≥ 1 and r4 ∈
{8i, 8i + 2, . . . , 120i}.

Proof. There exists a 4-RGDD of type 83i+1 with r0
4 = 8i for i ≥ 1 by Theorem

1.4, which we take as the master design and all designs of Lemma 2.5 as ingredient
designs. We expand all points of the master design 15 times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each parallel class
expands in a way that several uniform parallel classes are created. Each 4-pc of the
master design results in 1, 3, . . . , 15 4-pcs. We obtain a {3, 4}-URGDD of type 1203i+1

with r4 ∈ {8i, 8i + 2, . . . , 120i}, as we fill all parallel classes appropriately. �

Theorem 4.13. There exists a {3, 4}-URGDD of type 1203i+1 for i ≥ 1 and r4 ∈
{0, 2, 4, . . . , 120i}.

Proof. The assertion follows by Lemmas 4.11 and 4.12. �

Lemma 4.14. There exists a {3, 4}-URGDD of type 603i+1 for i ≥ 1 and r4 ∈ {0, 4i,

4i + 2, . . . , 60i}.

Proof. There exists a 3-RGDD of type 603i+1 for i ≥ 1 by Theorem 1.4.
There exists a 4-RGDD of type 43i+1 with r0

4 = 4i for i ≥ 1 by Theorem 1.4, which
we take as the master design and all designs of Lemma 2.5 as ingredient designs. We
expand all points of the master design 15 times. All blocks of any parallel class have
to be filled with the same ingredient design. Therefore, each parallel class expands
in a way that several uniform parallel classes are created. Each 4-pc of the master
design results in 1, 3, . . . , 15 4-pcs. We obtain a {3, 4}-URGDD of type 603i+1 with
r4 ∈ {4i, 4i + 2, . . . , 60i}, as we fill all parallel classes appropriately. �

Lemma 4.15. There exist {3, 4}-URGDDs of type 12i for

i = 5, r4 ∈ {0, 4, 16};
i = 10, r4 ∈ {0, 12, 36};
i = 325, r4 ∈ {1, 056, 1, 058, . . . , 1, 296}.

Proof. There exist a 3-RGDD of type 12i and 4-RGDD of type 12i for all i ≥ 4 by
Theorem 1.4.
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There exists a 4-RGDD of type 54 by Theorem 1.4. This is also a {4, 5}-URGDD of
type 45 r4 = 4, r5 = 1, which we take as the master design. We take a 3-RGDD of type
35 and a {3, 4}-URGDD of type 34 with r4 = 1 from Lemma 2.4 as ingredient designs.
We expand all points of the master design three times and obtain a {3, 4}-URGDD of
type 125 with r4 = 4.

There exists a 4-RGDD of type 410 with r4 = 12 by Theorem 1.4. We take a
{3, 4}-URGDD of type 34 with r4 = 1 from Lemma 2.4 as ingredient design. We expand
all points of the master design three times and obtain a {3, 4}-URGDD of type 1210 with
r4 = 12.

There exists a 4-RGDD of type 413 by Theorem 1.4, which we take as master design. We
take the RGDDs of Lemma 2.5 as ingredient designs. We expand all points of the master
design 15 times and obtain a {3, 4}-URGDD of type 6013 with r4 ∈ {16, 18, . . . , 240}.
There exists a {3, 4}-URGDD of type 125 with r4 ∈ {0, 4, 16} from above. We fill all
groups of size 60 with the same URGDD of type 125. We obtain a {3, 4}-URGDD of
type 1265 with r4 ∈ {16, 18, . . . , 256}. There exists a 4-RGDD of type (12 · 65)5 with
r0

4 = 1, 040 by Theorem 1.4. We fill all groups with the same URGDD of type 1265. The
result is a {3, 4}-URGDD of type 12325 with r4 ∈ {1,056, 1,058, . . . , 1,296}. �

Lemma 4.16. There exists a {3, 4}-URGDD of type 606, r4 ∈ {0, 2, . . . , 90, 100}.
There exists a {3, 4}-URGDD of type 607, r4 ∈ {0, 4, 6, 8, . . . , 120}.
There exists a {3, 4}-URGDD of type 6024, r4 ∈ {0, 2, 4, . . . , 460}.

Proof. There exists a {3, 4}-URGDD of type 46 with r4 ∈ {0, 2, 4, 6} by Lemma 3.1,
which we take as master design. We take the RGDDs of Lemma 2.5 as ingredient
designs. We expand all points of the master design 15 times. Therefore, each parallel
class expands in a way that several uniform parallel classes are created. Each 4-pc of the
master design results in 1, 3, . . . , or 15 4-pcs. We obtain a {3, 4}-URGDD of type 606

with r4 ∈ {0, 2, . . . , 90, 100}.
There exists a 5-RGDD of type 75 by Theorem 1.3. This is equivalent to a {5, 7}-

URGDD of type 57 r5 = 6, r7 = 1,which is our master design. We take a 3-RGDD of type
127 (Theorem 1.4) and a {3, 4}-URGDD of type 125 with r4 ∈ {0, 4, 12} (Lemma 4.15)
as ingredient designs. We expand all points of the master design 12 times and obtain a
{3, 4}-URGDD of type 607 with r4 = 4.

There exists a 4-RGDD of type 74 by Theorem 1.4. This is also a {4, 7}-URGDD of type
47 r4 = 6, r7 = 1,which is our master design. We take a 3-RGDD of type 157 (Theorem
1.4) and a {3, 4}-URGDD of type 154 with r4 ∈ {1, 3, 5, 7, 9, 11, 13, 15} (Lemma 2.5)
as ingredient designs. We expand all points of the master design 15 times and obtain a
{3, 4}-URGDD of type 607 with r4 = 6. The assertion follows for u = 7 by Lemma 4.14.

There exists a 4-RGDD of type 2406 with r4 = 400 by Theorem 1.4. There exists a
{3, 4}-URGDD of type 46 with r4 ∈ {0, 2, 4, 6} by Lemma 3.1, which we take as master
design. We take the URGDDs of Lemma 2.10 as ingredient designs and expand all
points of the master design 60 times. We thus obtain a {3, 4}-URGDD of type 2406

with r4 ∈ {0, 2, 4, . . . , 360, 400}. We fill in all groups with the same {3, 4}-URGDD of
type 604 with r4 ∈ {0, 2, 4, . . . , 60} and get a {3, 4}-URGDD of type 6024 with r4 ∈
{0, 2, 4, . . . , 460}. �
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Lemma 4.17. There exists a {3, 4}-frame of type 1802i+1 for i ≥ 2, i /∈ {3, 11,

13, 19, 23} and r̃4 ∈ {0, 2, 4, . . . , 40} per group of the frame. This r̃4 can be chosen
independently for each group.

Proof. There exists a 4-frame of type 302i+1 for i ≥ 2, i /∈ {3, 11, 13, 19, 23} with
�
r4 = 10 per group by Theorem 1.6, which we take as the master design. We take the
RGDDs of Lemma 2.1 as ingredient designs. We expand all points of the master design
six times. All blocks of any parallel class have to be filled with the same ingredient
design. Therefore, each holey parallel class expands in a way that several uniform holey
parallel classes are created. Each 4-pc of the master design results in 0, 2, or 4 4-pcs.
We obtain a {3, 4}-frame of type 1802i+1 with r̃4 ∈ {0, 2, 4, . . . , 40} per group of the
frame. �

Lemma 4.18. There exists a {3, 4}-URGDD of type 606i+4 for i ≥ 1 and r4 ∈
{0, 2, 4, . . . , 40(2i + 1)}.

Proof. There exists a {3, 4}-frame of type 1802i+1 for i ≥ 2 and r̃4 ∈ {0, 2, 4, . . . , 40}
per group of the frame by Lemma 4.17. There exists a {3, 4}-URGDD of type 604 with
r4 ∈ {0, 2, 4, . . . , 60} by Lemma 2.10. Adjoin 60 infinite points to the frame and fill each
group with one of the above URGDDs, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as are
corresponding to the group. Then the number of 3-pcs corresponding to the group of the
frame and its URGDD is also equal. The result is a {3, 4}-URGDD of type 606i+4 for
i ≥ 2 and r4 ∈ {0, 2, 4, . . . , 40(2i + 1)}.

Now the case i = 1. There exists a 4-RGDD of type 1010 with r0
4 = 30 by Theo-

rem 1.4, which we take as the master design. We take the URGDDs of Lemma 2.1 as
ingredient designs. We expand all points of the master design six times. We obtain a
{3, 4}-URGDD of type 6010 with r4 ∈ {0, 2, 4, . . . , 120}, as we fill all parallel classes
appropriately. �

Theorem 4.19. There exists a {3, 4}-URGDD of type 606i+4 with r4 ∈ {0, 2, 4, . . . ,

60(2i + 1)} for i ≥ 1.

Proof. The assertion follows by Lemmas 4.14 and 4.18, since 6i + 4 = 3(2i + 1) + 1.
�

Lemma 4.20. There exists a {3, 4}-URGDD of type 606u+1 for u ≥ 5 and r4 ∈ {0, 4,

6, 8, . . . , 120u}.

Proof. There exists a {3, 4}-frame of type 360u for u ≥ 5 and r̃4 ∈ {0, 2, 4, . . . , 80}
per group of the frame by Lemma 4.7. There exists a {3, 4}-URGDD of type 607 with
r4 ∈ {0, 4, 6, 8, . . . , 120} by Lemma 4.16.

Adjoin 60 infinite points to the frame and fill each group with one of the above
URGDDs, where the infinite points form a group. Each group of the frame has to be filled
with a URGDD with the same number of 4-pcs as are corresponding to the group. Then
the number of 3-pcs corresponding to the group of the frame and its URGDD is also equal.
The result is a {3, 4}-URGDD of type 606u+1 for u ≥ 5 and r4 ∈ {0, 4, 6, 8, . . . , 80u}.
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There exists a {3, 4}-frame of type 360u for u ≥ 5 and r̃4 ∈ {8, 10, 12, . . . , 120} per
group of the frame by Lemma 4.8. Adjoin 60 infinite points to the frame and fill each
group with one of the above URGDDs, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as are
corresponding to the group. The result is a {3, 4}-URGDD of type 606u+1 for u ≥ 5 and
r4 ∈ {8u, 8u + 2, 8u + 4, . . . , 120u}.

Remark, that it is no simple way to combine both frames, while for example we have
no frame with r̃4 < 8 in one group and r̃4 > 80 in another group. �

Lemma 4.21. There exists a {3, 4}-URGDD of type 72u with r4 ∈ {0, 2, 4, . . . ,

16(u − 1), 24(u − 1)} for u ≥ 4.

Proof. There exists a 4-RGDD of type 72u with r0
4 = 24(u − 1) for u ≥ 4 by

Theorem 1.4. There exists a 4-RGDD of type 12u with r0
4 = 4(u − 1) for u ≥ 4 by

Theorem 1.4, which we take as the master design. We take the URGDDs of Lemma
2.1 as ingredient designs. We expand all points of the master design six times. All
blocks of any parallel class have to be filled with the same ingredient design. Therefore,
each parallel class expands in a way that several uniform parallel classes are created.
Each 4-pc of the master design results in 0, 2, or 4 4-pcs. We obtain a {3, 4}-URGDD
of type 72u with r4 ∈ {0, 2, 4, . . . , 16(u − 1)}, as we fill all parallel classes
appropriately. �

Lemma 4.22. There exists a {3, 4}-URGDD of type 723i+1 with r4 ∈ {0, 2, 4, . . . ,

72i} for i ≥ 1.

Proof. There exists a 4-RGDD of type 83i+1 with r0
4 = 8i for i ≥ 1 by Theorem 1.4,

which we take as the master design. We take the RGDDs of Lemma 2.2 as ingredient
designs. We expand all points of the master design nine times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each parallel class
expands in a way that several uniform parallel classes are created. Each 4-pc of the master
design results in 1, 3, 5, 7, or 9 4-pcs. We obtain a {3, 4}-URGDD of type 72u with
r4 ∈ {8i, 8i + 2, 8i + 4, . . . , 72i} for i ≥ 1, as we fill all parallel classes appropriately.
The assertion follows by Lemma 4.21. �

Lemma 4.23. There exists a {3, 4}-URGDD of type 843i+1 for i ≥ 1 and r4 ∈ {0, 4i,

4i + 2, . . . , 84i}.

Proof. There exists a 3-RGDD of type 843i+1 for i ≥ 1 by Theorem 1.4.
There exists a 4-RGDD of type 43i+1 with r0

4 = 4i for i ≥ 1 by Theorem 1.4, which
we take as the master design and all designs of Lemma 2.7 as ingredient designs. We
expand all points of the master design 21 times. All blocks of any parallel class have
to be filled with the same ingredient design. Therefore, each parallel class expands in
a way that several uniform parallel classes are created. Each 4-pc of the master design
results in 1, 3, . . . , 19, or 21 4-pcs. We obtain a {3, 4}-URGDD of type 843i+1 with
r4 ∈ {4i, 4i + 2, . . . , 84i}, as we fill all parallel classes appropriately. �

Lemma 4.24. There exists a {3, 4}-URGDD of type 216u for u ≥ 4 and r4 ∈ {0, 2,

4, . . . , 72(u − 1)}.
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Proof. There exists a uniformly resolvable {3,4}-URGDD of type 184, r4 ∈ {0, 2,

4, . . . , 18} by Lemma 2.6, which is our ingredient design. There exists a 4-RGDD of
type 12u for u ≥ 4 by Theorem 1.4, which we take as the master design. We expand
all points of the master design 18 times. We obtain a {3, 4}-URGDD of type 216u with
r4 ∈ {0, 2, 4, . . . , 72(u − 1)}, as we fill all parallel classes appropriately. �

Lemma 4.25. There exists a {3, 4}-URGDD of type 1212i+4 for i ≥ 1 and r4 ∈ {0, 2,

4, . . . , 48i + 12}.

Proof. There exists a 4-RGDD of type 112i+4 with r0
4 = 4i + 1 for i ≥ 1 by

Theorem 1.4, which we take as the master design. We take the RGDDs of Lemma
2.3 as ingredient designs. We expand all points of the master design 12 times. All blocks
of any parallel class have to be filled with the same ingredient design. Therefore, each
parallel class expands in a way that several uniform parallel classes are created. Each 4-pc
of the master design results in 0, 2, 4, 6, 8, 10, or 12 4-pcs. We obtain a {3, 4}-URGDD
of type 1212i+4 with r4 ∈ {0, 2, 4, . . . , 48i + 12} for i ≥ 1, as we fill all parallel classes
appropriately. �

Lemma 4.26. There exists a {3, 4}-URGDD of type 126i+4 for i ≥ 2, i /∈ {13, 19} and
r4 ∈ {0, 2, 4, . . . , 8(2i + 1), 12(2i + 1)}.

Proof. There exists a {3, 4}-frame of type 362i+1 for i ≥ 2, i /∈ {3, 11, 13, 17, 19, 23}
and r̃4 ∈ {0, 2, 4, 6, 8} per group of the frame by Lemma 4.5. There exists a
{3, 4}-URGDD of type 124 with r4 ∈ {0, 2, . . . , 12} by Lemma 2.3. Adjoin 12 infinite
points to the frame and fill each group with one of the above URGDDs, where the infinite
points form a group. Each group of the frame has to be filled with a URGDD with the same
number of 4-pcs as are corresponding to the group. Then the number of 3-pcs correspond-
ing to the group of the frame and its URGDD is also equal. We obtain a {3, 4}-URGDD
of type 126i+4 for i ≥ 2, i /∈ {3, 11, 13, 17, 19, 23} and r4 ∈ {0, 2, 4, . . . , 8(2i + 1)}.

There exists a 4-RGDD of type 26i+4 for i ∈ {3, 17, 23} by Theorem 1.4, which
we take as master design and all designs of Lemma 2.1 as ingredient designs. We
expand all points of the master design six times. We obtain a {3, 4}-URGDD of type
126i+4 with r4 ∈ {0, 2, 4, . . . , 8(2i + 1)} for i ∈ {3, 17, 23}, as we fill all parallel classes
appropriately.

There exists a {3, 4}-URGDD of type 1207 with r4 ∈ {0, 2, 4, . . . , 160} by Lemma 4.11.
Filling all groups with a 3-RGDD of type 1210 or a 4-RGDD of type 1210 as appropriate
results in all {3, 4}-URGDD of type 1270 with r4 ∈ {0, 2, 4, . . . , 160 + 36}. �

Lemma 4.27. There exists a {3, 4}-URGDD of type 1215u+1 for u ≥ 5 and r4 ∈
{4u, 4u + 2, 4u + 4, . . . , 60u}.

Proof. There exists a {3, 4}-frame of type 180u for u ≥ 5 and r̃4 ∈ {4, 6, 8, . . . , 60}
per group of the frame by Lemma 3.21. There exists a {3, 4}-URGDD of type 1215+1

with r4 ∈ {0, 2, 4, . . . , 60} by Lemma 4.25. Adjoin 12 infinite points to the frame and
fill each group with one of the above URGDDs, where the infinite points form a group.
Each group of the frame has to be filled with a URGDD with the same number of 4-pcs
as are corresponding to the group. Then the number of 3-pcs corresponding to the group
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of the frame and its URGDD is also equal. The result is a {3, 4}-URGDD of type 1215u+1

for u ≥ 5 and r4 ∈ {4u, 4u + 2, 4u + 4, . . . , 60u}. �

Lemma 4.28. There exists a {3, 4}-URGDD of type 1230i+16 for i ≥ 2 and r4 ∈
{0, 2, 4, . . . , 60(2i + 1)}.

Proof. Let j = 5i + 2. We have 30i + 16 = 6(5i + 2) + 4 = 6j + 4. For i ∈
{3, 11, 13, 19, 23}, j ∈ {17, 57, 67, 97, 117}, respectively, there exists a {3, 4}-URGDD
of type 126j+4 with r4 ∈ {0, 2, 4, . . . , 8(2j + 1)} by Lemma 4.26.

There exists a {3, 4}-frame of type 1802i+1 for i ≥ 2, i /∈ {3, 11, 13, 19, 23} and r̃4 ∈
{0, 2, 4, . . . , 40} per group of the frame by Lemma 4.17 . There exists a {3, 4}-URGDD
of type 1215+1 with r4 ∈ {0, 2, 4, . . . , 60} by Lemma 4.25. Adjoin 12 infinite points to the
frame and fill each group with one of the above URGDDs, where the infinite points form
a group. Each group of the frame has to be filled with a URGDD with the same number
of 4-pcs as are corresponding to the group. Then the number of 3-pcs corresponding to
the group of the frame and its URGDD is also equal. The result is a {3, 4}-URGDD of
type 1230i+16 for i ≥ 2 and r4 ∈ {0, 2, 4, . . . , 40(2i + 1)}.

The assertion follows in the same way by use of Lemma 3.21 with u = 2i + 1. �

Lemma 4.29. There exists a {3, 4}-URGDD of type 242i+1 with r4 ∈ {0, 2, 4, . . . , 8i}
for i ≥ 2.

Proof. Let i ≥ 2. There exists a 4-RGDD of type (2i + 1)4 by Theorem 1.4. This is
also a {4, 2i + 1}-URGDD of type 42i+1r4 = 2i, r2i+1 = 1, which we take as the master
design. We take the RGDDs of Lemma 2.1 as ingredient designs. We expand all points
of the master design six times. All blocks of any parallel class have to be filled with
the same ingredient design. Each 4-pc of the master design results in 0, 2, or 4 4-pcs.
There exists a 3-RGDD of type 62i+1 by Theorem 1.4. We obtain a {3,4}-URGDD of
type 242i+1 with r4 ∈ {0, 2, 4, . . . , 8i}, as we fill all parallel classes appropriately. �

Lemma 4.30. There exists a {3, 4}-URGDD of type 246u+1 for u ≥ 5 and r4 ∈ {0, 2,

4, . . . , 48u − 4, 48u}.

Proof. We take a {3, 4}-frame of type 144u for u ≥ 5 and r̃4 ∈ {0, 2, 4, . . . , 48} per
group of the frame by Lemma 4.3. There exists a {3, 4}-URGDD of type 247 with
r4 ∈ {0, 2, 4, . . . , 44, 48} by Lemma 3.15. Adjoin 24 infinite points to the frame and fill
each group with one of the above URGDDs, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as are
corresponding to the group. Then the number of 3-pcs corresponding to the group of the
frame and its URGDD is also equal. �

Lemma 4.31. There exists a {3, 4}-URGDD of type 108u for u ≥ 4 and r4 ∈ {0, 4
(u − 1), 4(u − 1) + 2, . . . , 36(u − 1)}.

Proof. There exists a 3-RGDD of type 108u for u ≥ 4 by Theorem 1.4.
There exists a 4-RGDD of type 12u for u ≥ 4 by Theorem 1.4, which we take

as the master design and all designs of Lemma 2.2 as ingredient designs. We ex-
pand all points of the master design nine times. All blocks of any parallel class
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have to be filled with the same ingredient design. Therefore, each parallel class ex-
pands in a way that several uniform parallel classes are created. Each 4-pc of the
master design results in 1, 3, 5, 7, or 9 4-pcs. We obtain a {3, 4}-URGDD of type
108u with r4 ∈ {0, 4(u − 1), 4(u − 1) + 2, . . . , 36(u − 1)}, as we fill all parallel classes
appropriately. �

Lemma 4.32. There exists a {3, 4}-f rame of type 324u for u ≥ 5 and r̃4 ∈ {4, 6,

8, . . . , 36} per group of the frame. This r̃4 can be chosen independently for each group.

Proof. There exists a 4-frame of type 12u for u ≥ 5 with �
r4 = 4 per group by Theorem

1.6, which we take as the master design. We take the URGDDs of Lemma 2.8 as ingredient
designs. We expand all points of the master design 27 times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each holey parallel
class expands in a way that several uniform holey parallel classes are created. Each 4-pc
of the master design results in 1, 3, 5, 7, or 9 4-pcs. We obtain a {3, 4}-frame of type
324u with r̃4 ∈ {4, 6, 8, . . . , 36} per group of the frame. �

Lemma 4.33. There exists a {3, 4}-frame of type 324u for u ≥ 5, u �= 12, and r̃4 ∈
{12, 14, . . . , 108} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 36u with �
r4 = 12 per group for u ≥ 5, u �= 12 by

Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.2
as ingredient designs. We expand all points of the master design nine times. All blocks of
any parallel class have to be filled with the same ingredient design. Therefore, each holey
parallel class expands in a way that several uniform holey parallel classes are created.
Each 4-pc of the master design results in 1, 3, 5, 7, or 9 4-pcs. We obtain a {3, 4}-frame
of type 324u with r̃4 ∈ {12, 14, . . . , 108} per group of the frame. �

Lemma 4.34. There exists a {3, 4}-URGDD of type 1227u+1 for u ≥ 5, u �= 12 and
r4 ∈ {4u, 4u + 2, . . . , 108u}.

Proof. There exists a {3, 4}-frame of type 324u for u ≥ 5 and r̃4 ∈ {4, 6, 8, . . . , 36}
per group of the frame by Lemma 4.32. There exists a {3, 4}-URGDD of type 1227+1

with r4 ∈ {0, 2, 4, . . . , 108} by Lemma 4.25. Adjoin 12 infinite points to the frame and
fill each group with one of the above URGDDs, where the infinite points form a group.
The result is a {3, 4}-URGDD of type 1227u+1 for u ≥ 5 and r4 ∈ {4u, 4u + 2, . . . , 36u}.

There exists a {3, 4}-frame of type 324u for u ≥ 5, u �= 12, and r̃4 ∈ {12, 14, . . . , 108}
per group of the frame by Lemma 4.33. Adjoin 12 infinite points to the frame and fill
each group with one of the above URGDDs, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as
are corresponding to the group. The result is a {3, 4}-URGDD of type 1227u+1 for u ≥ 5,
u �= 12, and r4 ∈ {12u, 12u + 2, . . . , 108u}. �

Lemma 4.35. There exists a {3, 4}-URGDD of type 364u+1 for u ≥ 5 and r4 ∈ {0, 4,

6, 8, . . . , 48u − 12, 48u}.

Proof. We take a {3, 4}-frame of type 144u for u ≥ 5 and r̃3 ∈ {72, 69, 66, . . . , 0}, r̃4 ∈
{0, 2, 4, . . . , 48} per group of the frame from Lemma 4.3. There exists a {3, 4}-URGDD
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of type 365 with r4 ∈ {0, 4, 6, 8, . . . , 36, 48} by Lemma 3.12 and Theorem 1.4. Adjoin
36 infinite points to the frame and fill each group with one of the above URGDDs, where
the infinite points form a group. Each group of the frame has to be filled with a URGDD
with the same number of 4-pcs as are corresponding to the group. Then, there are an equal
number of 3-pcs corresponding to the group of the frame and its URGDD. The result is
a {3, 4}-URGDD of type 364u+1 for u ≥ 5 and r4 ∈ {0, 4, 6, 8, . . . , 48u − 12, 48u}. �

Lemma 4.36. There exists a {3, 4}-URGDD of type 24u with r4 ∈ {0, 2, 4, . . . , 7(u −
1)} for u ∈ {11, 17, 23, 41, 59}.

Proof. There exists an RTD(8, u) for u ∈ {11, 23, 41, 59}, since all these u are prime.
Therefore, there exists a {8, u}-URGDD of type 8u with r8 = u − 1 and ru = 1. We
apply the latter as the master design. There exist a {3, 4}-URGDD of type 38, r4 ∈
{1, 3, 5, 7} by Lemma 3.1 and a 3-RGDD of type 3u by Theorem 1.4, which we take
as ingredient designs. We expand all points of the master design three times. All blocks
of any parallel class have to be filled with the same ingredient design. Each 8-pc of the
master design results in 1, 3, 5, or 7 4-pcs. We obtain a {3, 4}-URGDD of type 24u

with r4 ∈ {u − 1, u + 1, . . . , 7(u − 1)}, as we fill all parallel classes appropriately. The
assertion follows by Lemma 4.29. �

Lemma 4.37. There exists a {3, 4}-frame of type 1084i+1 for i ≥ 1 and r̃4 ∈
{0, 2, 4, . . . , 36} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 94i+1 for i ≥ 1 with �
r4 = 3 per group by

Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.3
as ingredient designs. We expand all points of the master design 12 times. All blocks of
any parallel class have to be filled with the same ingredient design. Therefore, each holey
parallel class expands in a way that several uniform holey parallel classes are created.
Each 4-pc of the master design results in 0, 2, 4 . . ., 12 4-pcs. We obtain a {3, 4}-frame
of type 1084i+1 with r̃4 ∈ {0, 2, 4, . . . , 36} per group of the frame. �

Lemma 4.38. There exists a {3, 4}-f rame of type 2524i+1 for i ≥ 1 and r̃4 ∈
{0, 2, 4, . . . , 84} per group of the frame. This r̃4 can be chosen independently for each
group.

Proof. There exists a 4-frame of type 214i+1 for i ≥ 1 with �
r4 = 7 per group by

Theorem 1.6, which we take as the master design. We take the URGDDs of Lemma 2.3
as ingredient designs. We expand all points of the master design 12 times. All blocks of
any parallel class have to be filled with the same ingredient design. Therefore, each holey
parallel class expands in a way that several uniform holey parallel classes are created.
Each 4-pc of the master design results in 0, 2, 4, . . . , 12 4-pcs. We obtain a {3, 4}-frame
of type 2524i+1 with r̃4 ∈ {0, 2, 4, . . . , 84} per group of the frame. �

Lemma 4.39. There exists a {3, 4}-frame of type 1, 008u for u ≥ 5 and r̃4 ∈
{0, 2, 4, . . . , 336} per group of the frame. This r̃4 can be chosen independently for each
group.
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Proof. There exists a 4-frame of type 84u for u ≥ 5 with �
r4 = 28 per group by Theorem

1.6, which we take as the master design. We take the RGDDs of Lemma 2.3 as ingredient
designs. We expand all points of the master design 12 times. All blocks of any parallel
class have to be filled with the same ingredient design. Therefore, each holey parallel
class expands in a way that several uniform holey parallel classes are created. Each 4-pc
of the master design results in 0, 2, 4, 6, 8, 10, or 12 4-pcs. We obtain a {3, 4}-frame of
type 1, 008u with r̃4 ∈ {0, 2, 4, . . . , 336} per group of the frame. �

Lemma 4.40. There exists an IURD({3, 4}; 1, 008 + 264) with a hole of size 264 and
r4 ∈ {0, 2, 4, . . . , 308, 336}, r0

4 ∈ {1, 3, 5, . . . , 85}.

Proof. There exists a {3, 4}-frame of type 2525 and r̃4 ∈ {0, 2, 4, . . . , 84} per group
of the frame by Lemma 4.38. There exists a {3, 4}-URGDD of type 1221+1 with r4 ∈
{0, 2, 4, . . . , 56, 84} by Lemma 4.26. Adjoin 12 infinite points to the frame and fill four
groups with one of the above URGDDs, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as are
corresponding to the group. Then the number of 3-pcs corresponding to the group of the
frame and its URGDD is also equal. The result are 4-pcs with r4 ∈ {0, 2, 4, . . . , 308, 336}.
We fill in the 24 groups of size 12, which are enclosed in the chosen four groups of size
72, with a URD({3, 4}; 12) and obtain four partial 3-pcs and one partial 4-pc. Together
with the partial 4-pcs of the last group, we have r0

4 ∈ {1, 3, 5, . . . , 85} partial 4-pcs. The
last group and the infinite points generate the hole of size 264. �

Lemma 4.41. There exists a {3, 4}-URGDD of type 483i+1 for i ≥ 1 and r4 ∈ {0, 2,

4, . . . , 48i}.

Proof. There exists a 4-RGDD of type 43i+1 for i ≥ 1 by Theorem 1.4, which we take
as the master design and all designs of Lemma 2.3 as ingredient designs. We expand all
points of the master design 12 times. We obtain a {3, 4}-URGDD of type 483i+1 with
r4 ∈ {0, 2, 4, . . . , 48i}, as we fill all parallel classes appropriately. �

Lemma 4.42. There exists a {3, 4}-URGDD of type 486 with r4 ∈ {0, 2, 4, . . . ,

72, 80}. There exists a {3, 4}-URGDD of type 4811 with r4 ∈ {0, 2, 4, . . . , 160}.

Proof. There exists a {3, 4}-URGDD of type 46 with r4 ∈ {0, 2, 4, 6} by Lemma 3.1,
which we take as master design. We take the RGDDs of Lemma 2.3 as ingredient designs.
We expand all points of the master design 12 times. We obtain a {3, 4}-URGDD of type
486 with r4 ∈ {0, 2, 4, . . . , 72, 80}.

There exists a 4-RGDD of type 114 by Theorem 1.4. This is also a {4, 11}-URGDD of
type 411 r4 = 10, r11 = 1, which we take as master design. We take a 3-RGDD of type
1211, a 4-RGDD of type 1211, and all designs of Lemma 2.3 as ingredient designs. We
expand all points of the master design 12 times. We obtain a {3, 4}-URGDD of type 4811

with r4 ∈ {0, 2, 4, . . . , 160}, as we fill all parallel classes appropriately. �

Lemma 4.43. There exists a {4, 6}-frame of type (3; 41)2(2i−1)(5; 61)1 for i ≥ 4 and
i �= 34.

Proof. There exists a 4-RGDD of type 62i for i ≥ 4 and i �= 34 by Theorem 1.4. We
remove a point and obtain a {4, 6}-frame of type (3; 41)2(2i−1)(5; 61)1. �
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Lemma 4.44. There exists a {6, g}-frame of type (5; 61)g(g − 1; g1)1 for g ≥ 7 and
g /∈ {10, 14, 15, 18, 20, 22, 26, 30, 34, 38, 46, 60}.

Proof. There exists an RTD(6, g) for g ≥ 7 and g /∈ {10, 14, 15, 18, 20, 22, 26, 30, 34,

38, 46, 60} by Theorem 1.3. Therefore, there exists a {6, g}-URGDD of type 16g with
r6 = g and rg = 1. We remove a point and obtain a {6, g}-frame of type (5; 61)g(g −
1; g1)1 for the same g. �

5. NEW CLASSES OF URDS

In this section, we derive the existence of URDs for some new modular classes. Specif-
ically, we show that all admissible URDs exist for v ≡ 36 (mod 144), v ≡ 0 (mod 60),
and v ≡ 36 (mod 108), with a few possible exceptions. Our first main result follows.

Theorem 5.1. There exist all admissible URD({3, 4}; v) for v ≡ 36 (mod 144), pos-
sibly excepting v = 612: r4 ∈ {189, 191}.

Proof. There exists a {3, 4}-URGDD of type 364u+1 for u ≥ 5 and r4 ∈ {0, 4,

6, 8, . . . , 48u − 12, 48u} by Lemma 4.35. Filling in all groups with the same appro-
priate URD({3, 4}; 36) (Lemma 3.2) results in all admissible URD({3, 4}; 144u + 36) for
u ≥ 5, while the gaps are covered by URD({3, 4}; 36) with r4 ∈ {1, 3, 5, . . . , 11}.

There exist all admissible URD({3, 4}; 180) by Lemma 3.17.
There exists a {3, 4}-URGDD of type 49 with r4 ∈ {0, 2, 4, 6, 8, 10} by Lemma 3.2.

We expand all points of this design nine times and obtain a {3, 4}-URGDD of type
369 with r4 ∈ {0, 2, . . . , 90, 96} by Lemma 2.2 and Theorem 1.4. By filling all groups
appropriately with the same URD({3, 4}; 36), we obtain all admissible URD({3, 4}; 324).

There exist all admissible URD({3, 4}; 468) by Lemma 3.26.
There exists a {3, 4}-URGDD of type 3617 with r4 ∈ {0, 2, 4, . . . , 176, 192} by Lemma

3.24. We obtain all admissible URD({3, 4}; 612) possibly excepting r4 ∈ {189, 191} by
filling all groups appropriately with the same URD({3, 4}; 36). �

Lemma 5.2. There exist all admissible URD({3, 4}; v) for v ≡ 0 (mod 360).

Proof. There exists a {3, 4}-URGDD of type 3610 for r4 ∈ {0, 12, 14, 16, . . . , 108} by
Lemma 3.13. We obtain all admissible URD({3, 4}; 360) by filling all groups appropri-
ately with the same URD({3, 4}; 36).

There exists a {3, 4}-URGDD of type 1802i for i ≥ 2 and r4 ∈ {0, 2, 4, . . . , 60(2i − 1)}
by Theorem 4.10. There exist all admissible URD({3, 4}; 180) by Lemma 3.17. The
assertion follows by filling all groups appropriately with the same URD({3, 4}; 180). �

Lemma 5.3. There exist all admissible URD({3, 4}; v) for v ≡ 120 (mod 360), pos-
sibly excepting v = 120: r4 ∈ {27, 29, 31}.

Proof. The case v = 120 is handled in Lemma 3.9.
There exists a {3, 4}-URGDD of type 1203i+1 for i ≥ 1 and r4 ∈ {0, 2, 4, . . . , 120i}

by Theorem 4.13. There exist all admissible URD({3, 4}; 120) possibly excepting
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r4 ∈ {27, 29, 31} by Lemma 3.9. There exists a URD({3, 4}; 360i + 120), r4 ∈ {1, 3,

5, . . . , 120i + 23} by filling all groups appropriately with the same URD({3, 4}; 120).
There exists a 4-RGDD of type 606i+2 with r0

4 = 20(6i + 1) for i ≥ 1 by Theorem
1.4. We obtain a URD({3, 4}; 360i + 120), r4 ∈ {120i + 21, 120i + 23, . . . , 120i + 39}
by filling all groups appropriately with the same URD({3, 4}; 60) (Lemma 3.4). �

Lemma 5.4. There exist all admissible URD({3, 4}; v) for v ≡ 240 (mod 360).

Proof. There exists a URD({3, 4}; 240) by Theorem 1.14.
There exists a {3, 4}-URGDD of type 606i+4 with r4 ∈ {0, 4, 6, 8, . . . , 60(2i + 1)}

for i ≥ 1 by Theorem 4.19. There exist all admissible URD({3, 4}; 60) by Lemma 3.4.
The assertion follows by filling all groups appropriately with the same URD({3, 4};
60). �

Theorem 5.5. There exist all admissible URD({3, 4}; v) for v ≡ 0 (mod 120), possibly
excepting v = 120: r4 ∈ {27, 29, 31}.

Proof. The assertion follows by Lemmas 5.2–5.4. �

Lemma 5.6. There exists a {3, 4}-URGDD of type 602i+1 with r4 ∈ {0, 4, 8, . . . ,

40i − 24, 40i − 16, 40i − 12, 40i} for i ≥ 2.

Proof. There exists a 5-RGDD of type (2i + 1)5 for i ≥ 2 by Theorem 1.3. This is
also a {5, 2i+1}-URGDD of type 52i+1, r0

5 = 2i, r0
2i+1 = 1, which we take as the master

design. There exist a 3-RGDD of type 122i+1, a 4-RGDD of type 122i+1 with r0
4 = 8i, and

a {3, 4}-URGDD of type 125 with r4 ∈ {0, 4, 16} by Lemma 4.15, which we take as ingre-
dient designs. We expand all points of the master design 12 times. Each 5-pc of the master
design results in 0, 4, or 16 4-pcs. We obtain a {3, 4}-URGDD of type 602i+1 with r4 ∈
{0, 4, 8, . . . , 32i − 24, 32i − 16, 32i − 12, 32i} ∪ {8i, 8i + 4, 8i + 8, . . . , 40i − 24,

40i − 16, 40i − 12, 40i}, as we fill all parallel classes appropriately. �

Lemma 5.7. There exist all admissible URD({3, 4}; 120i + 60) for i ≥ 1.

Proof. There exist all admissible URD({3, 4}; 180) by Lemma 3.17. There ex-
ists a {3, 4}-URGDD of type 602i+1 with r4 ∈ {0, 4, 8, . . . , 40i − 24, 40i − 16, 40i −
12, 40i} for i ≥ 2 by Lemma 5.6. By filling with URD({3, 4}; 60) (Lemma 3.4), we
obtain a URD({3, 4}; 120i + 60) with r4 ∈ {1, 3, . . . , 40i + 19} for i ≥ 2. �

Now we are ready for our second main result.

Theorem 5.8. There exist all admissible URD({3, 4}; v) for v ≡ 0 (mod 60), possibly
excepting v = 120: r4 ∈ {27, 29, 31}.

Proof. The assertion follows by Lemma 3.4, Theorem 5.5, and Lemma 5.7. �

Theorem 5.9. There exist all admissible URD({3, 4}; v) for v ≡ 72 (mod 216).

Proof. There exists a {3, 4}-URGDD of type 723i+1 with r4 ∈ {0, 2, 4, . . . , 72i} for
i ≥ 1 by Lemma 4.22. There exist all admissible URD({3, 4}; 72) by Lemma 3.5. The
assertion follows by filling all groups appropriately with the same URD({3, 4}; 72). �
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Lemma 5.10. There exist all admissible URD({3, 4}; 108 u + 36) for u ≥ 5, possibly
excepting r4 ∈ {11, 13, . . . , 4u − 1} for u ≡ 0 (mod 2).

Proof. There exists a {3, 4}-frame of type 108u with r̃4 ∈ {4, 6, . . . , 36} 4-pcs per
group for all u ≥ 5 from Lemma 4.2. There exists a {3, 4}-URGDD of type 364 with
r4 ∈ {0, 4, 6, 8, . . . , 36} by Lemma 3.13. Adjoin 36 infinite points to the frame and fill
each group together with the infinite points with one of the above URGDDs, where the
infinite points form a group. Each group of the frame has to be filled with a URGDD
with the same number of 4-pcs as are corresponding to the group of the frame. Therefore,
the number of 3-pcs corresponding to the group of the frame and its URGDD is also
equal. The result is a {3, 4}-URGDD of type 363u+1 for u ≥ 5 and r4 ∈ {4u, 4u +
2, 4u + 4, . . . , 36u}. Filling in all groups with the same appropriate URD({3, 4}; 36)
from Lemma 3.17 results in all admissible URD({3, 4}; 108u + 36) for u ≥ 5 and
r4 ∈ {4u + 1, 4u + 3, 4u + 5, . . . , 36u + 11}.

When u ≡ 1 (mod 2), u ≥ 5, and u /∈ {15, 23, 27}, there exists a {3, 4}-frame of type
108u with r̃4 ∈ {0, 2, 4, . . . , 24} 4-pcs per group by Lemma 4.1. Proceeding as above,
using this frame in place of that above, gives a {3, 4}-URGDD of type 363u+1with
r4 ∈ {0, 2, 4, . . . , 24u}. Filling in all groups with the same appropriate URD({3, 4};
36) from Lemma 3.17 results in all admissible URD({3, 4}; 108u + 36) with r4 ∈
{1, 3, 5, . . . , 24u + 11} when u ≥ 5, u ≡ 1 (mod 2), and u /∈ {15, 23, 27}.

To deal with the cases u ∈ {15, 23, 27}}, take û = (3u + 1)/2, so û ∈ {23, 35, 41},
respectively. There exists a {3,4}-RGDD of type 72û with r̂4 ∈ {0, 2, 4, . . . , 16(û − 1)}
by Lemma 4.21. Filling in all groups with the same appropriate URD({3, 4}; 72) r̄4 ∈
{1, 3}from Theorem 1.12 results in a URD({3, 4}; 72û) with r4 ∈ {1, 3, 5, . . . ,16(û −
1) + 3} for û ∈ {23, 35, 41}.

Note that 72û = 108u + 36 and 16(û − 1) = 8(3u + 1) = 24u + 8, so there exists a
URD({3, 4}; 108u + 36) with r4 ∈ {1, 3, 5, . . . ,24u + 11} for u ∈ {15, 23, 27}.

There exists a URD({3, 4}; 108u + 36) with r4 ∈ {1, 3, 5, 7,9} for u ≡ 0 (mod 2) by
Theorems 1.4, 1.12, and 2.12. �

Lemma 5.11. There exist all admissible URD({3, 4}; 216 u + 36) for u ≥ 3.

Proof. We take a {3, 4}-frame of type 216u for u ≥ 5 and r̃4 ∈ {0, 2, 4, . . . , 72} per
group of the frame from Lemma 4.4. There exists a {3, 4}-URGDD of type 367 with
r4 ∈ {0, 2, 4, . . . , 72} by Lemma 3.23. Adjoin 36 infinite points to the frame and fill each
group with one of the above URGDDs, where the infinite points form a group. Each
group of the frame has to be filled with a URGDD with the same number of 4-pcs as are
corresponding to the group of the frame. Therefore, the number of 3-pcs corresponding to
the group of the frame and its URGDD is also equal. The result is a {3, 4}-URGDD of type
366u+1 for u ≥ 5, r4 ∈ {0, 2, 4, . . . , 72u}. Filling in all groups with the same appropriate
URD({3, 4}; 36) from Lemma 3.2 results in all admissible URD({3, 4}; 216 u + 36) for
u ≥ 5.

There exists a {3, 4}-URGDD of type 36u, r4 ∈ {0, 2, . . . , 8(u − 1)} for u ∈ {19, 25}by
Lemma 3.20. Filling in all groups with the same appropriate URD({3, 4}; 36) results in all
URD({3, 4}; 648) and URD({3, 4}; 900) for r4 ∈ {1, 3, 5, . . . ,8(u − 1) + 11}. Therefore,
there exist all admissible URD({3, 4}; 648) and URD({3, 4}; 900) by Lemma 5.10. �

Now we are ready for our third main result.

Journal of Combinatorial Designs DOI 10.1002/jcd



512 SCHUSTER

Theorem 5.12. There exist all admissible URD({3, 4}; v) for v ≡ 36 (mod 108).

Proof. There exist all admissible URD({3, 4}; 144) by Theorem 1.14.
The assertion follows by Lemmas 3.25, 5.10, and 5.11. �

6. URDs FOR v CONGRUENT 24 MODULO 48

There exist all admissible URDs for v ≡ 0 (mod48) by Theorem 1.14. In this section,
we deal with the case v ≡ 24 (mod 48) by considering the cases v congruent 24, 72, and
120 modulo 144. We firstly obtain the lower half of all admissible values of r4.

Theorem 6.1. There exists a URD({3, 4}; 48i + 24) with r4 ∈ {1, 3, . . . , 8i + 7}.
Proof. There exist all admissible URD({3, 4}; 72) by Lemma 3.5.

There exists a {3, 4}-URGDD of type 242i+1 with r4 ∈ {0, 2, 4 . . . , 8i} for i ≥ 2 by
Lemma 4.29. Filling in all groups with the same appropriate URD({3, 4}; 24) results in
all desired designs. �

Theorem 6.2. There exist all admissible URD({3, 4}; v) for v ≡ 24 (mod 144) pos-
sibly excepting v = 456 and r4 ∈ {141, 143}.

Proof. There exists a {3, 4}-URGDD of type 246u+1 for u ≥ 5 and r4 ∈ {0, 2, 4, . . . ,

48u − 4, 48u} by Lemma 4.30. Filling in all groups with the same appropriate
URD({3, 4}; 24) results in all admissible URD({3, 4}; v) for v ≡ 24 (mod 144), v ≥ 744.

There exist all admissible URD({3, 4}; 168) by Lemma 3.16.
There exists a {3, 4}-URGDD of type 2413 with r4 ∈ {0, 2, 4, . . . , 88, 96} by

Lemma 3.15. Filling in all groups with the same appropriate URD({3, 4}; 24) results
in all admissible URD({3, 4}; 312).

There exists a {3, 4}-URGDD of type 2419 with r4 ∈ {0, 2, 4, . . . , 132, 144} by Lemma
3.15. Filling in all groups with the same appropriate URD({3, 4}; 24) results in all admis-
sible URD({3, 4}; 456), possibly excepting r4 ∈ {141, 143}. There exist all admissible
URD({3, 4}; 600) by Theorem 5.5. �

Lemma 6.3. There exist all admissible URD({3, 4}; v) for v ≡ 72 (mod 432).

Proof. The assertion follows by Theorem 5.9. �

Theorem 6.4. There exist all admissible URD({3, 4}; v) for v ≡ 0 (mod 216).

Proof. There exists a {3, 4}-URGDD of type 216u for u ≥ 4 and r4 ∈ {0, 2, 4, . . . ,

16(u − 1), 16(u − 1) + 14, . . . , 72(u − 1)} by Lemma 4.24.
Filling in all groups with the same appropriate URD({3, 4}; 216) (Lemma 3.19) results

in all admissible URD({3, 4}; v) for v ≡ 0 (mod 216), v ≥ 1, 080.
There exist all admissible URD({3, 4}; 216) by Lemma 3.19.
There exist all admissible URD({3, 4}; v), v ∈ {432, 864} by Theorem 1.14.
There exist a {3, 4}-URGDD of type 1086 with r4 ∈ {0, 20, 22, . . . , 180} by

Lemma 4.31. There exist all admissible URD({3, 4}; 648) by filling all groups
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appropriately with the same URD({3, 4}; 108) (Lemma 3.7). For example r4 = 180 +
29 = 176 + 33 and r4 = 180 + 31 = 178 + 33. �

Corollary 6.5. There exist all admissible URD({3, 4}; v) for v ≡ 216 (mod 432).

Proof. The assertion follows by Theorem 6.4. �

Lemma 6.6. There exist all admissible URD({3, 4}; v) for v ≡ 360 (mod 432).

Proof. We have 432i + 360 = 108(4i) + 324 + 36 = 108(4i + 3) + 36. The asser-
tion follows by Theorem 5.12. �

Theorem 6.7. There exist all admissible URD({3, 4}; v) for v ≡ 72 (mod 144).

Proof. The assertion follows by Lemma 6.3, Corollary 6.5, and Lemma 6.6. �

This leaves the case v ≡ 120 (mod 144). We begin by giving some lemmas and a
theorem that we will use later.

Lemma 6.8. There exist all admissible URD({3, 4}; 324u + 12) for u ≥ 5, possibly
excepting r̂4 ∈ {11, 13, . . . , 4u − 1}.

Proof. There exists all admissible URD({3, 4}; 324 · 12 + 12 ≡ 65 · 60) by
Theorem 5.8. There exists a {3, 4}-URGDD of type 1227u+1 for u ≥ 5, u �= 12 and
r4 ∈ {4u, 4u + 2, . . . , 108u} by Lemma 4.34. The assertion follows by filling all groups
with a URD({3, 4}; 12) and by Theorem 1.11. �

Theorem 6.9. There exist all admissible URD({3, 4}; 360i + 192) for i ≥ 2.

Proof. There exists a {3, 4}-URGDD of type 1230i+16 for i ≥ 2 and r4 ∈ {0, 2,

4, . . . , 60(2i + 1)} by Lemma 4.28. There exist all admissible URD({3, 4}; 360i +
192) for i ≥ 2 by filling in all groups with a URD({3, 4}; 12) with r4 = 1 and by
Theorem 1.11. �

Lemma 6.10. There exist all admissible URD({3, 4}; v) for v ≡ 120 + 144 (mod
1008), v ≥ 5, 304.

Proof. There exists a {3, 4}-frame of type 1, 008u for u ≥ 5 and r̃4 ∈ {0, 2, 4, . . . ,

336} per group of the frame by Lemma 4.39. There exists a URD({3, 4}; 1, 272)r4 ∈
{1, 3, 5, . . . , 423} by Theorem 6.9. There exists a IURD({3, 4}; 1, 008 + 264) with a
hole of size 264 and r4 ∈ {0, 2, 4, . . . , 308, 336}, r0

4 ∈ {1, 3, 5, . . . , 85} by Lemma 4.40.
Adjoin 264 infinite points to the frame and fill u − 1 groups with the above IURD with
the same r0

4 but different r4, where the infinite points fill the hole. Each group of the
frame has to be filled with the same number of 4-pcs as are corresponding to the group.
Then the number of 3-pcs corresponding to the group of the frame and its URGDD is
also equal. We thus obtain r̂4 ∈ {0, 2, 4, . . . ,336(u − 2) − 28, 336(u − 1)} 4-pcs. The
partial 4-pcs of all IURDs combine to form partial 4-pcs over all u − 1 groups, while in
each case all r0

4 are equal. We obtain r̂0
4 ∈ {1, 3, 5, . . . , 85} partial 4-pcs over all u − 1

groups. Together with the r̃4 ∈ {0, 2, 4, . . . , 336} partial 4-pcs of the last group, we obtain
r̃0

4 ∈ {1, 3, 5, . . . , 336 + 85} partial 4-pcs over all u − 1 groups.
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The URD({3, 4}; 1, 272) is used to fill in the last group together with
the infinite points. We thus obtain �

r4 ∈ {1, 3, 5, . . . , 336 + 85} ∩ {1, 3, . . . , 423} =
{1, 3, . . . , 336 + 85} 4-pcs. The result is a URD({3, 4}; 1, 008 u + 264) for u ≥ 5 and
r4 ∈ {1, 3, 5, . . . , 336u + 85}. We apply Theorem 1.11 for the greatest r4. �

Lemma 6.11. There exist all admissible URD({3, 4}; v) for v ∈ {696, 1,704, 5,736}.

Proof. There exists an 8-RGDD of type 87i+1 for i ∈ {4, 10, 34} by [35], which we
take as the master design. There exists a {3, 4}-URGDD of type 38 with r4 ∈ {1, 3, 5, 7}
by Lemma 3.1. We expand all points of the master design three times and obtain
a {3, 4}-URGDD of type 247i+1 with r4 ∈ {8i, 8i + 2, . . . , 56i} for i ∈ {4, 10, 34}.
The assertion follows by filling in all groups with the same URD({3, 4}; 24) and by
Theorem 6.1. �

For the last subclass v ≡ 120 (mod 144), we deal with v congruent 120, 264, and 408
modulo 432.

Lemma 6.12. There exist all admissible URD({3, 4}; v) for v ≡ 408 (mod 432), v ≥
1, 704.

Proof. There exists a {4, 6}-frame of type (3; 41)2(2i−1)(5; 61)1 for i ≥ 4 and i �= 34
by Lemma 4.43.

We take all {3, 4}-URGDD of type 364 with r4 ∈ {0, 2, . . . , 36} (Lemma 3.18) and
366 with r4 ∈ {0, 2, . . . , 54, 60} (Lemma 3.18) as ingredient designs. We expand all
points of the frame 36 times and obtain a {3, 4}-frame of type 1082(2i−1) 1801 with
r̃4 ∈ {0, 2, 4, . . . , 36} per group of size 108 and �

r4 ∈ {0, 2, . . . , 54, 60} per group of size
180.

There exists a {3, 4}-URGDD of type 1210 with r4 ∈ {0, 12, 36} by Lemma 4.15.
Adjoin 12 infinite points to the frame and fill all groups of size 108 with one
of the above URGDDs, where the infinite points form a group. We thus obtain
r̂4 ∈ {0, 12, 24, . . . ,72(2i − 1) − 24, 72(2i − 1)} 4-pcs over all points.

We fill each new group of size 12 with a URD({3, 4}; 12) with r4 = 1 from Lemma 2.4,
but not the infinite points. These URDs combine to form partial 4-pcs over all groups of
size 108 with r0

4 = 1. Together with the �
r4 ∈ {0, 2, . . . , 54, 60} partial 4-pcs of the last

group, we obtain r̃0
4 ∈ {1, 3, 5, . . . , 55, 61} partial 4-pcs which miss exactly the points in

the group of size 180.
The URD({3, 4}; 192) (Theorem 1.14) with r4 ∈ {1, 3, . . . , 63} is used to fill in the

last group together with the infinite points. We thus obtain �
r4 ∈ {1, 3, . . . , 55, 61}

4-pcs. The result is a URD({3, 4}; 216(2i − 1) + 192) with r4 ∈ {1, 3, . . . , 72(2i − 1) +
55, 72(2i − 1) + 61}. The assertion follows by Theorems 1.11 and 1.13.

We now deal with the case i = 34 in a similar manner. There exists a 4-RGDD of
type 2417 by Theorem 1.4. We remove a point and obtain a {4, 24}-frame of type
(3; 41)128(23; 241)1.

We take all {3, 4}-URGDD of type 364 with r4 ∈ {0, 2, . . . , 36} (Lemma 3.18)
and 3624 with r4 ∈ {0, 2, . . . , 276} (Lemma 3.23) as ingredient designs. We expand
all points of the frame 36 times and obtain a {3, 4}-frame of type 108128 8281 with
r̃4 ∈ {0, 2, 4, . . . , 36} per group of size 108 and �

r4 ∈ {0, 2, . . . , 276} per group of size
828.
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There exists a {3, 4}-URGDD of type 1210 with r4 ∈ {0, 12, 36} by Lemma 4.15.
Adjoin 12 infinite points to the frame and fill all groups of size 108 with one
of the above URGDDs, where the infinite points form a group. We thus obtain
r̂4 ∈ {0, 12, 24, . . . ,4,608 − 24, 4,608} 4-pcs over all points.

We fill each new group of size 12 with a URD({3, 4}; 12), but not the infinite points.
These URDs combine to form partial 4-pcs over all groups of size 108 with r0

4 = 1.
Together with the �

r4 ∈ {0, 2, . . . , 276} partial 4-pcs of the last group, we obtain r̃0
4 ∈

{1, 3, 5, . . . , 277} partial 4-pcs which miss exactly the points in the group of size 828.
The URD({3, 4}; 840) (Theorem 5.8) with r4 ∈ {1, 3, . . . , 279} is used to fill in the last

group together with the infinite points. We thus obtain �
r4 ∈ {1, 3, . . . , 277} 4-pcs. The

result is a URD({3, 4}; 13, 824 + 840 ≡ 216 · 67 + 192) with r4 ∈ {1, 3, . . . , 4,608 +
277}. The assertion for this case follows by Theorems 1.11 and 1.13. �

Theorem 6.13. There exist all admissible URD({3, 4}; v) for v ≡ 408 (mod 432),
possibly excepting v = 408, r4 ∈ {121, 123, 125, 127}.

Proof. There exists a {3, 4}-URGDD of type 2417 with r4 ∈ {0, 2, 4, . . . , 112, 128}
by Lemma 4.36 and Theorem 1.4. We fill all groups with the same URD({3, 4}; 24) and
obtain a URD({3, 4}; 408) with r4 ∈ {1, 3, . . . , 119, 129, 131, 133, 135}.

There exist all admissible URD({3, 4}; 840) by Theorem 5.8.
There exist all admissible URD({3, 4}; 1, 272) by Theorem 6.9.
The assertion follows by Lemma 6.12. �

Lemma 6.14. There exist all admissible URD({3, 4}; v) for v ≡ 120 (mod 432), pos-
sibly excepting r4 ∈ {(v/3) − 13,(v/3) − 11,(v/3) − 9}.

Proof. The case v = 120 is handled in Lemma 3.9.
There exists a {3, 4}-frame of type 1084i+1 for i ≥ 1 and r̃4 ∈ {0, 2, 4, . . . , 36} per

group of the frame by Lemma 4.37.
There exists a {3,4}-URGDD of type 1210 with r4 ∈ {0, 12, 36} by Lemma 4.15.
Adjoin 12 infinite points to the frame and fill 4i groups with one of the above URGDDs,

where the infinite points form a group. We thus obtain r̂4 ∈ {0, 12, 24, . . . ,144i −
24, 144i} 4-pcs.

We fill each new group of size 12 with a URD({3, 4}; 12), but not the infinite points.
A URD({3, 4}; 120) (Lemma 3.9) with r4 ∈ {1, 3, . . . , 25, 33, 35, 37, 39} is used to fill
in the last group together with the infinite points. We thus obtain �

r4 ∈ {1, 3, 5, . . . ,

37} ∩ {1, 3, . . . , 25, 33, 35, 37, 39} = {1, 3, . . . , 25, 33, 35, 37} 4-pcs. The result is
a URD({3, 4}; 432 i + 120) for i ≥ 1 with r4 ∈ {1, 3, 5, . . . , 144i + 25, 144i +
33, 144i + 35, 144i + 37}. We apply Theorem 1.11 for the greatest r4. �

Lemma 6.15. There exist all admissible URD({3, 4}; v) for v ≡ 120 (mod 432),
v ≥ 8, 328.

Proof. There exists a 5-GDD of type (12i)5(4j )1 for i ≥ 5, 4j ≤ (4/3) · 12i = 16i,
i.e. j ≤ 4i by Theorem 1.2, which is our master design. We take a 4-frame of type 35

(Theorem 1.6) as ingredient design. We expand all points of the master design three times
and obtain a 4-frame of type (36i)5 (12j )1.
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We take all {3, 4}-URGDD of type 94 with r4 ∈ {1, 3, 5, 7, 9} (Lemma 2.3) as ingredi-
ent designs. We expand all points of the 4-frame nine times and obtain a {3, 4}-frame of
type (324i)5(108j )1 with r̃4 ∈ {12i, 12i + 2, 12i + 4, . . . , 108i} per group of size 324i

and �
r4 ∈ {4j, 4j + 2, . . . , 36j} per group of size 108j .

There exists a {3, 4}-URGDD of type 1227i+1 with r4 ∈ {4i, 4i + 2, . . . , 108i} for
i ≥ 5, i �= 12 by Lemma 4.34. Adjoin 12 infinite points to the frame and fill all groups
of size 324i with one of the above URGDDs, where the infinite points form a group. We
thus obtain r ′

4 ∈ {60i, 60i + 2, 60i + 4, . . . , 540i} 4-pcs which cover all points.
We fill each new group of size 12 with a URD({3, 4}; 12), but not the infinite points.

These URDs combine to form partial 4-pcs over all groups of size 324i with r0
4 = 1.

Together with the �
r4 ∈ {4j, 4j + 2, . . . , 36j} partial 4-pcs of the last group, we obtain

r̃0
4 ∈ {4j + 1, 4j + 3, . . . , 36j + 1} partial 4-pcs which miss exactly the points of the

group of size 108j .
There exists a URD({3, 4}; 108j + 12) with r4 = 36j + 4 − 3 = 36j + 1 by Theo-

rem 1.13. This URD is used to fill in the last group together with the infinite points. We
thus obtain �

r4 = 36j + 1 4-pcs, which adds to r ′
4 above.

Now let v ≡ 120 (mod 432), v ≥ 8,328, and i = �(v − 120)/1,620�, then we have
i ≥ 5. The remainder R = v − 120 − 1,620 �(v − 120)/1,620� ≡ 0 (mod 108) and is
smaller than 1,620. Let j = 1 + (R/108), then we have 1 ≤ j ≤ 15 < 4i. In particular,
we have v = 1,620i + 108j + 12.

When i �= 12, the result from above is a URD({3, 4}; v) with r4 ∈ {60i + 36j + 1,

60i + 36j + 3, . . . , 540i + 36j + 1}. The assertion follows by Theorems 6.1 and
1.11.

In the case i = 12, there exists a {3, 4}-URGDD of type 1227i+1 with r4 ∈ {1,056,

1,058, . . . , 1, 296 = 108i} by Lemma 4.15. The assertion for this case follows by
Lemma 6.14. �

Theorem 6.16. There exist all admissible URD({3, 4}; v) for v ≡ 120 (mod 432),
possibly excepting v ∈ {120, 552, 984}, and r4 ∈ {(v/3) − 13,(v/3) − 11,(v/3) − 9}.

Proof. By Lemmas 6.14 and 6.15, there are 16 values to consider v ∈{1,416, 1,848,
2,280, 2,712, 3,144, 3,576, 4,008, 4,440, 4,872, 5,304, 5,736, 6,168, 6,600, 7,032, 7,464,
7,896}.

For the case v = 1,416, there exists a 4-RGDD of type 410 with r4 = 12 by Theorem 1.4.
We add the same point to each block of the first 4-pc, a second point to each block of
the second 4-pc and so on. The result is a 5-GDD of type 410121, which is our master
design. We take a 4-frame of type 35 (Theorem 1.6) as ingredient design. We expand
all points of the master design three times and obtain a 4-frame of type 1210361. We
take all {3, 4}-URGDD of type 94 with r4 ∈ {1, 3, 5, 7, 9} (Lemma 2.2) as ingredient
designs. We expand all points of the 4-frame nine times and obtain a {3, 4}-frame of
type 108103241 with r̃4 ∈ {4, 6, . . . , 36} per group of size 108 and �

r4 ∈ {12, 14, . . . , 108}
per group of size 336. There exists a {3, 4}-URGDD of type 1210 with r4 ∈ {0, 12, 36}
by Lemma 4.15. Adjoin 12 infinite points to the frame and fill all groups of size 108
with one of the above URGDDs, where the infinite points form a group. We thus obtain
r̂4 ∈ {120, 144, . . . ,360} 4-pcs over all points. We fill each new group of size 12 with
a URD({3, 4}; 12), but not the infinite points. These URDs combine to form partial 4-
pcs over all groups of size 108 with r0

4 = 1. Together with the �
r4 ∈ {12, 14, . . . , 108}

partial 4-pcs of the last group, we obtain r̃0
4 ∈ {13, 15, . . . , 109} partial 4-pcs, which
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miss the group of size 324 and cover all of the points of the groups of size 108. The
URD({3, 4}; 336) (Theorem 1.14) with r4 ∈ {1, 3, . . . , 111} is used to fill in the last
group together with the infinite points. We thus obtain �

r4 ∈ {13, 15, . . . , 109} 4-pcs. The
result is a URD({3, 4}; 118 · 12 = 1,416) with r4 ∈ {133, 135, . . . , 360 + 109 = 469}.
The assertion follows for this case by Theorems 1.11 and 6.1.

For the case v = 1,848, there exists a {3, 4}-URGDD of type 8422 with r4 ∈
{28, 30, . . . , 588} by Lemma 4.23. We fill all groups with the same URD({3, 4}; 84)
and obtain a URD({3, 4}; 1, 848) with r4 ∈ {29, 31, . . . , 615}. The assertion for this case
follows by Theorem 6.1.

There exist all admissible URD({3, 4}; 2,280) by Theorem 5.8.
There exist all admissible URD({3, 4}; 2,712) by Theorem 6.9.
For the case v = 3,144, there exists a {6, 12}-frame of type (5; 61)11(11; 121)1 by

Lemma 4.44. We take all {3, 4}-URGDD of type 486 with r4 ∈ {0, 2, . . . , 72, 80} (Lemma
4.42) and 4811 with r4 ∈ {0, 2, 4, . . . , 160} (Lemma 4.42) as ingredient designs. We
expand all points of the frame 48 times and obtain a {3, 4}-frame of type 24011 5281

with r̃4 ∈ {0, 2, . . . , 72, 80} per group of size 240 and �
r4 ∈ {0, 2, . . . , 160} per group

of size 528. There exists a {3, 4}-URGDD of type 2411 with r4 ∈ {0, 2, . . . , 70, 80} by
Lemma 4.36. Adjoin 24 infinite points to the frame and fill all groups of size 240 with
one of the above URGDDs, where the infinite points form a group. We thus obtain
r̂4 ∈ {0, 2, . . . , 870, 880} 4-pcs over all points. We fill each new group of size 24 with
the same URD({3, 4}; 24), but not the infinite points. These URDs combine to form
partial 4-pcs over all groups of size 240 with r0

4 ∈ {1, 3, . . . , 7}. Together with the
�
r4 ∈ {0, 2, . . . , 160} partial 4-pcs of the last group, we obtain r̃0

4 ∈ {1, 3, 5, . . . , 167}
partial 4-pcs, which miss the group of size 528 and cover all of the points of the groups
of size 240.

A URD({3, 4}; 504) with r4 ∈ {1, 3, . . . , 167} (Theorem 6.7) is used to fill in the last
group together with the infinite points. We thus obtain �

r4 ∈ {1, 3, . . . , 167} 4-pcs. The
result is a URD({3, 4}; 262 · 12 = 3, 144) with r4 ∈ {1, 3, . . . , 1,047}.

There exist all admissible URD({3, 4}; 3, 576) by Theorem 6.1 and Lemma 6.8.
For the case v = 4,008, there exists a 5-GDD of type 16581 by Theorem 1.2, which

is our master design. We take a 4-frame of type 35 (Theorem 1.6) as ingredient de-
sign. We expand all points of the master design three times and obtain a 4-frame of
type 485241. We take all {3, 4}-URGDD of type 154 with r4 ∈ {1, 3, . . . , 15} (Lemma
2.5) as ingredient designs. We expand all points of the 4-frame 15 times and ob-
tain a {3, 4}-frame of type 72053601 with r̃4 ∈ {16, 18, . . . , 240} per group of size
720 and �

r4 ∈ {8, 10, . . . , 120} per group of size 360. There exists a {3, 4}-URGDD
of type 4816 with r4 ∈ {0, 2, 4, . . . , 240} by Lemma 4.41. Adjoin 48 infinite points
to the frame and fill all groups of size 720 with one of the above URGDDs, where
the infinite points form a group. We thus obtain r̂4 ∈ {80, 82, . . . ,1,200} 4-pcs over
all points. We fill each new group of size 48 with the same URD({3, 4}; 48), but not
the infinite points. These URDs combine to form partial 4-pcs over all five groups
of size 720 with r0

4 ∈ {1, 3, . . . , 15}. Together with the �
r4 ∈ {8, 10, . . . , 120} partial

4-pcs of the last group, we obtain r̃0
4 ∈ {9, 11, . . . , 135} partial 4-pcs partial 4-pcs

which miss the group of size 360 and cover all of the points of the groups of size
720. There exists a {3, 4}-URGDD of type 2417 with r4 ∈ {16, 18, . . . , 112} by Lemma
4.36. By filling the groups, Theorems 6.1 and 1.13, we obtain a URD({3, 4}; 408) with
r4 ∈ {1, 3, . . . , 119, 129, 131, 133, 135}, which is used to fill in the last group together
with the infinite points. We thus obtain �

r4 ∈ {9, 11, . . . , 119, 129, 131, 133, 135} 4-pcs.
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The result is a URD({3, 4}; 324 · 12 = 4,008)with r4 ∈ {89, 91, . . . , 1,335}. The asser-
tion for this case follows by Theorem 6.1.

There exist all admissible URD({3, 4}; 4,440) by Theorem 5.8.
There exist all admissible URD({3, 4}; 4,872) by Theorem 6.9.
There exist all admissible URD({3, 4}; 5,304) by Lemma 6.10.
There exist all admissible URD({3, 4}; 5,736) by Lemma 6.11.
There exist all admissible URD({3, 4}; 6,168) by Theorem 6.1 and Lemma 6.8.
There exist all admissible URD({3, 4}; 6,600) by Theorem 5.8.
There exist all admissible URD({3, 4}; 7,032) by Theorem 6.9.

For the case v = 7,464, there exists a 4-RGDD of type 813 with r0
4 = 32 by Theorem 1.4,

which we take as the master design. We take the URGDDs of Lemma 2.5 as ingredient
designs. We expand all points of the master design 15 times. We obtain a {3, 4}-URGDD
of type 12013 with r4 ∈ {32, 34, 36, . . . , 480}, as we fill all parallel classes appropriately.
There exists a 5-GDD of type 40541 by Theorem 1.2, which is our master design. We
take a 4-frame of type 35 (Theorem 1.6) as ingredient design. We expand all points
of the master design three times and obtain a 4-frame of type1205121. We take all
{3, 4}-URGDD of type 124 with r4 ∈ {0, 2, . . . , 12} (Lemma 2.3) as ingredient designs.
We expand all points of the 4-frame 12 times and obtain a {3, 4}-frame of type (120 ·
12)51441 with r̃4 ∈ {0, 2, . . . , 480} per group of size 1,440 and �

r4 ∈ {0, 2, . . . , 48}
per group of size 144. We take from above a {3, 4}-URGDD of type 12013 with r4 ∈
{32, 34, 36, . . . , 480}. Adjoin 120 infinite points to the frame and fill all groups of size
120 with one of the above URGDDs, where the infinite points form a group. We thus
obtain r̂4 ∈ {160, 162, 164, . . . ,2,400} 4-pcs over all points.

We fill each new group of size 120 with the same URD({3, 4}; 120), but not the infinite
points. These URDs combine to form partial 4-pcs over all groups of size 1,440 with
r0

4 ∈ {1, 3, . . . , 25, 33, 35, 37, 39}. Together with the �
r4 ∈ {0, 2, . . . , 48} partial 4-pcs of

the last group, we obtain r̃0
4 ∈ {1, 3, 5, . . . , 87} partial 4-pcs which miss the group of size

144 and cover all of the points contained in groups of size 1,440. A URD({3, 4}; 264) with
r4 ∈ {1, 3, . . . , 77, 81, 83, 85, 87}(next Lemma) is used to fill in the last group together
with the infinite points. We thus obtain �

r4 ∈ {1, 3, . . . , 77, 81, 83, 85, 87} 4-pcs. The
result is a URD({3, 4}; 622 · 12 = 7,464) with r4 ∈ {161, 163, . . . , 2,487}. The assertion
for this case follows by Theorem 6.1.

For the final case v = 7,896, there exists a {3, 4}-URGDD of type 8494 with r4 ∈
{124, 126, . . . , 2,604} by Lemma 4.23. We fill all groups with the same URD({3, 4}; 84)
and obtain a URD({3, 4}; 7,896) with r4 ∈ {125, 127, . . . , 2,631}. The assertion for this
case follows by Theorem 6.1. �

For the last subsubclass v ≡ 264 (mod432), we deal with v congruent 264, 696, 1,128,
1,560, and 1,992 modulo 2160.

Lemma 6.17. There exist all admissible URD({3, 4}; v) for v ≡ 264 (mod 2160),
possibly excepting v = 264, r4 = 79.

Proof. There exists a {3, 4}-URGDD of type 2411 with r4 ∈ {0, 2, 4, . . . , 70} by
Lemma 4.36. Filling all groups appropriately with the same URD({3, 4}; 24) results in a
URD({3, 4}; 264) with r4 ∈ {1, 3, . . . , 77}. We obtain r4 ∈ {1, 3, . . . , 77, 81, 83, 85, 87}
for this design by Theorems 1.11 and 1.13.
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There exists a 5-GDD of type (8i)541 for i ≥ 1 by Theorem 1.2, which is our master
design. We take a 4-frame of type 35 (Theorem 1.6) as ingredient design. We expand all
points of the master design three times and obtain a 4-frame of type (24i)5121.

We take all {3, 4}-URGDD of type 184 with r4 ∈ {0, 2, . . . , 18} (Lemma 2.6) as ingredi-
ent designs. We expand all points of the 4-frame 18 times and obtain a {3, 4}-frame of type
(432i)52161 with r̃4 ∈ {0, 2, 4, . . . , 144i} per group of size 432i and �

r4 ∈ {0, 2, . . . , 72}
per group of size 216.

There exists a {3, 4}-URGDD of type 489i+1 with r4 ∈ {0, 2, . . . ,144i} for i ≥ 1 by
Lemma 4.41. Adjoin 48 infinite points to the frame and fill all groups of size 432i with
one of the above URGDDs, where the infinite points form a group. We thus obtain
r̂4 ∈ {0, 2, 4, . . . ,720i} 4-pcs over all points.

We fill each new group of size 48 with the same URD({3, 4}; 48), but not the infinite
points. These URDs combine to form partial 4-pcs over all five groups of size 432i with
r0

4 ∈ {1, 3, . . . , 15}. Together with the �
r4 ∈ {0, 2, . . . , 72} partial 4-pcs of the last group,

we obtain r̃0
4 ∈ {1, 3, 5, . . . , 87} partial 4-pcs which miss the group of size 216 and cover

all of the points of the groups of size 432i.
The URD({3, 4}; 264) with r4 ∈ {1, 3, . . . , 77, 81, 83, 85, 87} from above is used

to fill in the last group together with the infinite points. We thus obtain �
r4 ∈

{1, 3, . . . , 77, 81, 83, 85, 87} 4-pcs. The result is a URD({3, 4}; 2, 160i + 264) with
r4 ∈ {1, 3, . . . , 720i + 87} for i ≥ 1. �

Lemma 6.18. There exist all admissible URD({3, 4}; v) for v ≡ 696 (mod 720), v ≥
2,856.

Proof. There exists a {4, 6}-frame of type (3; 41)2(2i−1)(5; 61)1 for i ≥ 4 and i �= 34
by Lemma 4.43.

We take all {3, 4}-URGDD of type 604 with r4 ∈ {0, 2, . . . , 60} (Lemma 2.10) and
606 with r4 ∈ {0, 2, . . . , 90, 100} (Lemma 4.16) as ingredient designs. We expand all
points of the frame 60 times and obtain a {3, 4}-frame of type 1802(2i−1) 3001 with
r̃4 ∈ {0, 2, 4, . . . , 60} per group of size 180 and �

r4 ∈ {0, 2, . . . , 90, 100} per group of
size 300.

There exists a {3, 4}-URGDD of type 366 with r4 ∈ {0, 2, . . . , 54, 60} by Lemma 3.18.
Adjoin 36 infinite points to the frame and fill all groups of size 180 with one
of the above URGDDs, where the infinite points form a group. We thus obtain
r̂4 ∈ {0, 2, 4, . . . ,120(2i − 1) − 6,120(2i − 1)} 4-pcs over all points.

We fill each new group of size 36 with the same URD({3, 4}; 36), but not the infinite
points. These URDs combine to form partial 4-pcs over all groups of size 180 with
r0

4 ∈ {1, 3, . . . , 11}. Together with the �
r4 ∈ {0, 2, . . . , 90, 100} partial 4-pcs of the last

group, we obtain r̃0
4 ∈ {1, 3, 5, . . . , 111} partial 4-pcs which miss the group of size 300

and cover all of the points of the groups of size 180.
A URD({3, 4}; 336) (Theorem 1.14) with r4 ∈ {1, 3, . . . , 111} is used to fill in the last

group together with the infinite points. We thus obtain �
r4 ∈ {1, 3, . . . , 111} 4-pcs. The

result is a URD({3, 4}; 360(2i − 1) + 336) with r4 ∈ {1, 3, . . . , 120(2i − 1) + 111} for
i ≥ 4 and i �= 34.

Now the case i = 34. There exists a 4-RGDD of type 2417 by Theorem 1.4. We remove
a point and obtain a {4, 24}-frame of type (3; 41)128(23; 241)1.

We take all {3, 4}-URGDD of type 604 (Lemma 2.10) with r4 ∈ {0, 2, . . . , 60} and 6024

with r4 ∈ {0, 2, . . . , 460} (Lemma 4.16) as ingredient designs. We expand all points of the
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frame 60 times and obtain a {3, 4}-frame of type 180128 1, 3801 with r̃4 ∈ {0, 2, 4, . . . , 60}
per group of size 180 and �

r4 ∈ {0, 2, . . . , 460} per group of size 1,380.
There exists a {3, 4}-URGDD of type 366 with r4 ∈ {0, 2, . . . , 54, 60} by Lemma 3.18.

Adjoin 36 infinite points to the frame and fill all groups of size 180 with one of the above
URGDDs, where the infinite points form a group. We thus obtain r̂4 ∈ {0, 2, 4, . . . ,60 ·
128 − 6, 60 · 128} 4-pcs over all points.

We fill each new group of size 36 with the same URD({3, 4}; 36), but not the infinite
points. These URDs combine to form partial 4-pcs over all groups of size 180 with
r0

4 ∈ {1, 3, . . . , 11}. Together with the �
r4 ∈ {0, 2, . . . , 460} partial 4-pcs of the last group,

we obtain r̃0
4 ∈ {1, 3, 5, . . . , 471} partial 4-pcs which miss the group of size 1,380 and

cover all of the points of the groups of size 180.
A URD({3, 4}; 1, 416) (Lemma 6.14) with r4 ∈ {1, 3, . . . , 457, 465, 467, 469, 471}

is used to fill in the last group together with the infinite points. We thus obtain
�
r4 ∈ {1, 3, . . . , 457, 465, 467, 469, 471} 4-pcs. The result is a URD({3, 4}; 180 · 128 +
1, 416 = 180 · 134 + 336) with r4 ∈ {1, 3, . . . , 8,151}. �

Corollary 6.19. There exist all admissible URD({3, 4}; v) for v ≡ 696 (mod 2, 160).

Proof. There exist all admissible URD({3, 4}; 696) by Lemma 6.11. The assertion
follows by Lemma 6.18. �

Lemma 6.20. There exist all admissible URD({3, 4}; v) for v ≡ 1, 128 (mod 2160),
v ≥ 5, 448.

Proof. There exists a 5-GDD of type (8i)5201 for i ≥ 2 by Theorem 1.2, which is
our master design. We take a 4-frame of type 35 (Theorem 1.6) as ingredient design. We
expand all points of the master design three times and obtain a 4-frame of type(24i)5601.

We take all {3, 4}-URGDD of type 184 with r4 ∈ {0, 2, . . . , 18} (Lemma 2.6) as
ingredient designs. We expand all points of the 4-frame 18 times and obtain a
{3, 4}-frame of type (432i)51,0801 with r̃4 ∈ {0, 2, 4, . . . , 144i} per group of size 432i

and �
r4 ∈ {0, 2, . . . , 360} per group of size 1,080.

There exists a {3, 4}-URGDD of type 489i+1 with r4 ∈ {0, 2, . . . ,144i} by Lemma 4.41.
Adjoin 48 infinite points to the frame and fill all groups of size 432i with one of the above
URGDDs, where the infinite points form a group. We thus obtain r̂4 ∈ {0, 2, 4, . . . ,720i}
4-pcs over all points.

We fill each new group of size 48 with the same URD({3, 4}; 48), but not the infinite
points. These URDs combine to form partial 4-pcs over all five groups of size 432i with
r0

4 ∈ {1, 3, . . . , 15}. Together with the �
r4 ∈ {0, 2, . . . , 360} partial 4-pcs of the last group,

we obtain r̃0
4 ∈ {1, 3, 5, . . . , 375} partial 4-pcs, which miss the group of size 1,080 and

cover all of the points of the groups of size 432i.
A URD({3, 4}; 1,128) with r4 ∈ {1, 3, . . . , 9, 369,371,373,375} (Theorems 1.12 and

1.13) is used to fill in the last group together with the infinite points. We thus obtain
�
r4 ∈ {1, 3, . . . , 9, 369,371,373,375} 4-pcs. The result is a URD({3, 4}; 2,160i + 1,128)
with r4 ∈ {1, 3, . . . , 720i + 375} for i ≥ 2. �

Corollary 6.21. There exist all admissible URD({3, 4}; v) for v ≡ 1,560 (mod 2160).
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Proof. The assertion follows by Theorem 5.8. �

Corollary 6.22. There exist all admissible URD({3, 4}; v) for v ≡ 1,992 (mod 2160).

Proof. The assertion follows by Theorem 6.9 with i ≡ 5 (mod 6). �

Theorem 6.23. There exist all admissible URD({3, 4}; v) for v ≡ 264 (mod 432),
possibly excepting v ∈ {264, 1,128, 3,288}, r4 = (v/3) − 9.

Proof. Lemma 6.17, Corollary 6.19, Lemma 6.20, Corollary 6.21, and Corollary 6.22
cover every case except v ∈{1,128, 3,288}.

For the case v = 1,128, there exists a 4-RGDD of type 84 by Theorem 1.4. We remove
a point and obtain a {4, 8}-frame of type (3; 41)8(7; 81)1.

We take all {3, 4}-URGDD of type 364 with r4 ∈ {0, 2, . . . , 36} (Lemma 3.18) and 368

with r4 ∈ {0, 2, . . . , 84} (Lemma 3.23) as ingredient designs. We expand all points of the
frame 36 times and obtain a {3, 4}-frame of type 1088 2521 with r̃4 ∈ {0, 2, 4, . . . , 36}
per group of size 108 and �

r4 ∈ {0, 2, . . . , 84} per group of size 252. There exists a
{3, 4}-URGDD of type 1210 with r4 ∈ {0, 12, 36} by Lemma 4.15. Adjoin 12 infinite
points to the frame and fill all groups of size 108 with one of the above URGDDs,
where the infinite points form a group. We thus obtain r̂4 ∈ {0, 12, 24, . . . ,264, 288}
4-pcs over all points. We fill each new group of size 12 with a URD({3, 4}; 12), but not
the infinite points. These URDs combine to form partial 4-pcs over all groups of size
108 with r0

4 = 1. Together with the �
r4 ∈ {0, 2, . . . , 84} partial 4-pcs of the last group,

we obtain r̃0
4 ∈ {1, 3, 5, . . . , 85} partial 4-pcs which miss the group of size 252 and

cover all of the points contained in groups of size 108. A URD({3, 4}; 264) (Lemma
6.17) with r4 ∈ {1, 3, . . . , 77, 81, 83, 85, 87} is used to fill in the last group together with
the infinite points. We thus obtain �

r4 ∈ {1, 3, . . . , 77, 81, 83, 85} 4-pcs. The result is
a URD({3, 4}; 1, 128) with r4 ∈ {1, 3, . . . , 288 + 77, 288 + 81, 288 + 83, 288 + 85}.
The assertion for this case follows by Theorem 1.11.

For the case v = 3,288, there exists a {3, 4}-frame of type 25213 with r̃4 ∈
{0, 2, 4, . . . , 84} per group of the frame by Lemma 4.38. There exists a {3, 4}-URGDD of
type 1221+1 with r4 ∈ {0, 2, 4, . . . , 56, 84} by Lemma 4.26. Adjoin 12 infinite points to the
frame and fill 12 groups with one of the above URGDDs, where the infinite points form a
group. We thus obtain r̂4 ∈ {0, 2, 4, . . . ,980, 1,008} 4-pcs. We fill each new group of size
12 with a URD({3, 4}; 12), but not the infinite points. A URD({3, 4}; 264) (Lemma 6.17)
with r4 ∈ {1, 3, . . . , 77, 81, 83, 85, 87} is used to fill in the last group together with the
infinite points. We thus obtain �

r4 ∈ {1, 3, 5, . . . , 85} ∩ {1, 3, . . . , 77, 81, 83, 85, 87} =
{1, 3, . . . , 77, 81, 83, 85} 4-pcs. The result is a URD({3, 4}; 12 · 252 + 264 = 3,288)
with r4 ∈ {1, 3, 5, . . . , 1,085, 1,089, 1,091, 1,093}. We apply Theorem 1.11 for the
greatest r4. �

We summarize the results of this section.

Theorem 6.24. There exist all admissible URD({3, 4}; v) for v ≡ 24 (mod48), pos-
sibly excepting

v = 120 and r4 ∈ {(v/3) − 13,(v/3) − 11,(v/3) − 9};
v = 264 and r4 = (v/3) − 9;

v = 408 and r4 ∈ {(v/3) − 15, (v/3) − 13,(v/3) − 11,(v/3) − 9};
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v = 456 and r4 ∈ {(v/3) − 11,(v/3) − 9};
v = 552 and r4 ∈ {(v/3) − 13,(v/3) − 11,(v/3) − 9};
v = 984 and r4 ∈ {(v/3) − 13,(v/3) − 11,(v/3) − 9};
v = 1,128 and r4 = (v/3) − 9;

v = 3,288 and r4 = (v/3) − 9.
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